PrSjec)

The Nintendo Reverse Engineering Project

Day 2

Things covered on day 2:
e What is a register?
REG_DISPCNT and the setting of screen modes
Plotting pixels in mode 3,4,5
Input and the keypad
Displaying a picture and using the back buffer
Lines and other such raster creations
Rotation and Matrices

What is a register?

Before going further a few concepts need to be ironed out. The first concept (and
the only one that really matters at the moment) is the concept of memory mapped
registers.

Now, I am sure you are aware that the GBA has several different chips inside
responsible for creating the images and sounds that accompany most games. There
is a sound processor responsible for producing annoying chip tunes, the video
processor which puts all your convoluted data together in a nice and pretty display,
the memory chips that hold the data for our programs, and the processor which is in
overall control of the whole shebang (in all honestly many of these “chips” are
actually just parts of one large integrated circuit and not really separate chips).

When you are writing ¢ code to describe the events in your game you are directly
controlling the GBA processor. But, the GBA does not work alone and generally we
like to have some control over what the rest of the system is doing. The method by
which this is accomplished is the use of hardware registers.

Beginning at the memory address of 0x4000000 and running for quite some many
bytes is the memory mapped register space. What this means is that if I write some
arbitrary value to the address 0x4000000 then I will be writing to a register that will
have some effect on how the system renders (or fails to render) my video game.
Understanding registers is key to console development.

This brings me to the next concept that you should already know (if you know any ¢
at all) and that is how to write to memory address 0x4000000. Now, hopefully you
remember the concept of a pointer but, if not, that’s okay because I will cover it
briefly. Recall that a pointer is a type of variable that holds not data but, instead,
the address of some type of data. In this example, let us say we know (which we
do) that the register at 0x4000000 was 16 bits in length and controlled the display
and we hence call it REG_DISPCNT; we might use code like the following to write to
this address:

unsigned short *REG DISPCNT = (unsigned short *) 0x4000000;
*REG_DISPCNT = somevalue;

Now, this would work just fine but there are some issues with this code. First there
is the fact that since these are hardware registers we may not be the only ones
changing them. This is something the compiler needs to know else it will try to
optimize our code and likely break it. The way we tell the compiler that variables
change outside of the c code is to declare them volatile. The last issue is that we are
using a variable (RAM) to store a constant. We would be much better served if we
just used a #define...this also allows us to dereference the register in its declaration
and makes writing to it a bit simpler. Here is the new, more proper code.

#define REG DISPCNT (*(volatile unsigned short*)0x4000000)
REG DISPCNT = somevalue;

Notice there is no longer any need to dereference the register prior to use as it is
implicit in the definition. Also, this code uses no space in memory for the pointer as
it is just a constant. I hope this concept is clear to you; about 30% of the following
pages are nothing but descriptions and examples of how to use the hardware
registers to control the many features of the GBA. If you look in gba_registers.h you
will find all of the known registers defined similar to the manner described above.

REG_DISPCNT and setting the screen mode

And finally we are off to explore the GBA hardware. REG_DISPCNT is a 16-bit
register that resides at the memory address 0x400:0000. It is responsible for the
basic control of the display. Things such as turning on and off background layers,
controlling sprite memory layout, setting the screen mode, and a few other items are
in its domain. How can we get so much out of a single register? Well it turns out
that each bit in a register has a specific purpose so that, for example, setting bit 8 of
REG_DISPCNT would enable background 0. If setting a bit is an unclear concept
please look at my number system primer (which I am sure I have not finished yet
and therefore you will not actually be able to find and instead be forced to google
about for it). Below is a table delineating the relationship between the 16 bits of the
register and their corresponding control functions.

F E D C B A 9 8 7 6 5 4 3 |2 10

OW W1 WO OBJ BG3 BG2 BGl1 BGO B OM HB DB GB MODE

REG_DISPCNT @ 0x400:0000
Bits 0-2 (MODE): These bits control the screen mode. The screen mode can be 0, 1,
2, 3,4, orb.
Bit 3(GB): This is set by hardware if a GB or GBC cartridge is detected.
Bit 4(DB): This bit controls which buffer is the active buffer when in mode 4 and 5.
(double buffering support)
Bit 5(HB): This bit, when set, allows OAM to be updated during the horizontal blank.

We will talk more about this when it is time to figure out sprites.

Bit 6(OM): This flag determines what mapping mode is used for sprite graphics: 0 =
2D 1 = 1D. We will talk more when we talk about sprites

Bit 7(B): This bit, when set, will put the screen in a forced blank causing the screen
to go white.

Bits 8-C(BGx,0BJ): These bits, when set, enable the associated backgrounds and
OBJ (sprites)

Bits D-F(WO,W1,W0): These bits enable the window displays. Windows will be
covered later.

To make things simpler we will place all this new information into a header file so
that it easily accessible. The definitions for display control register bits can be found
in gba_video.h and are shown below.

#include "gba types.h"
///// REG DISPCNT defines

#define MODE 0 0

#define MODE 1 1

#define MODE 2 2

#define MODE 3 3

#define MODE 4 4

#define MODE 5 5

#define BACKBUFFER BIT (0x4)
#define H_BLANK_ OAM BIT (0x5)
#define OBJ MAP 2D 0
#define OBJ MAP 1D BIT (0x6)
#define FORCE_BLANK BIT (0x7)
#define BGO_ ENABLE BIT (0x8)
#define BG1l ENABLE BIT (0x9)
#define BG2_ ENABLE BIT (0xA)
#define BG3 ENABLE BIT (0xB)
#define OBJ ENABLE BIT (0xC)
#define WINl_ENABLE BIT (0xD)
#define WINZ_ENABLE BIT (0xE)

#define WINOBJ ENABLE BIT (0OxF)

///////SetMode Macro
#define SetMode (mode) REG DISPCNT = (mode)

Inside “gba_types.h” is a macro called BIT(n) that is defined as follows:

#define BIT (n) (1l<<(n))

This macro simply takes a value and returns a number with the appropriate bit set
using the left shift operator “<<".

Also included with the REG_DISPCNT definitions is a macro that allows you to more
readably set the screen mode. To use this macro all you do is the following: Say you
want mode 4, 1D OBJ mapping, and background 2 enabled.

SetMode (MODE 4 | OBJ MAP 1D | BG2 ENABLE); //and that’s it

You could also just as easily say

REG DISPCNT = MODE 4 | OBJ MAP 1D | BG2 ENABLE;
but the set mode option is more readable in my opinion.

Plotting pixels in modes 3, 4, and 5

The GBA video hardware is, for the most part, very straight forward. In bitmap
modes you have a linear map that controls every pixel on the screen. The screen is
240 pixels wide and 160 pixels high. First we will set up mode 3 which if you
remember is a linear buffer of 16-bit pixels. Let us revisit our sample code from day
one and see if we can understand now, how it works.

#include <gba.h> //everything you need for gba devving

/7777777777777 /// C code entry (main())/////////////////////
int main ()
{

unsigned char x,y;
SetMode (MODE_3 | BG2 ENABLE) ;

for(x = 0; x < SCREEN_WIDTH; x++)
for(y = 0; y < SCREEN_ HEIGHT; y++)
VideoBuffer [x + y * SCREEN WIDTH] = RGB16(31,0,0);

while (1) {}
}//end main

The first line simply includes all the headers that are created during this tutorial
series as well as some basic defines such as SCREEN_WIDTH and VideoBuffer.

VideoBuffer is defined as a pointer to the beginning of video ram (0x600:0000 if you
will recall). Being a pointer we can use it as an array and since we have no silly OS
telling us we are accessing memory out of range, or other such nonsense, using it is
quite straightforward. Accessing each pixel is just a matter of storing that pixel’s
color into the array. The GBA stores these colors in BGR format meaning the low 5
bits are red the next 5 are green and the next 5 blue, the high bit is unused. 5 bits
means 32 levels of each color for a total of 32*32*32 = 32,768 colors.

''Bits [F|E[D[c[B[A[9 8 [7[6(5[a[3[21]0
| //B/B[B|B[B[6[6 6|6 |6 R[R R[R|R
A bit representation of a BGR triplet.

The RGB16 macro allows you to enter the red, green, and blue components
separately and is defined in gba.h as follows.

#define RGB16 (r,qg,b) (((b)<<10)+((g)<<5)+(xr))

The first pixel resides at 0x600:0000 and the next at 0x600:0000 + 2 (or
0x600:0002) and so on until you get to the end of a scan line which is (239) * 2
away (or 0x600:01DD). The next line starts at 0x600:01FO.

To get the actual location of the pixel in terms of an x and y, you need to move down
an entire line (240*2bytesPerPixel) for each y and over the correct number of x.
Therefore, if you define an array, VideoBuffer, and make it equal to the start of video
memory (ul6* VideoMemory = (ul6*) 0x600:0000) then all that is left is to multiply
the y value by screen width and add the x value and you have the offset into the
array. VideoBuffer[y * 240 + x]. If you store a color in that location you then have a
pixel on the screen.

There is not much more to be said about Mode 3. We will come back to it later when
we discuss raster graphics.

Mode 5 is operated in a very similar manner to Mode 3. The only changes are as
follows:

SetMode (MODE_3 | BG2 ENABLE) ;
to

SetMode (MODE 5 | BG2 ENABLE); //set mode 5

and

VideoBuffer [x + y * SCREEN WIDTH] = RGB16(31,0,0);
to

VideoBuffer [x + y * 160] = RGB16(31,0,0);

Although you have a smaller area to work with you gain the advantage of having
enough room to place two screens in memory at once. This allows you to draw to
one screen while displaying the other, a process referred to as “Double Buffering”.
Double buffering allows for a smooth update of the screen. You always draw to the
off-screen buffer so your updates are not visible until you tell the video hardware to
switch.

Mode 4 is a slightly uglier beast to deal with. Unfortunately there is a severe
limitation imposed on mode 4. Even though mode 4 is 8 bits per pixel, video memory
can only be accessed 16 bits at a time. This means that in order to write a single
pixel in mode 4 you must read the two pixels that would be affected into ram, mask
out the pixel you want to change then write the two pixels back into memory. The
following is pseudocode that does just that:

unsigned short temp;
unsigned char pixel = color;

temp = VideoBuffer[(x + y * 240) / 21;

if(x & 1)

temp = (temp & OxFF00) + pixel;
else

temp = (temp & OxFF) + (pixel << 8);
VideoBuffer[(x + y * 240) / 2] = temp;

As you can probably guess, this causes a bottleneck, crippling mode 4’s
effectiveness. Because of this, most mode 4 engines just write 2 pixels at a time to
video memory. Being forced to calculate two pixels at a time is not so bad, but at
times, it is not possible; such as line or polygon drawing where the edges are only 1
pixel thick.

Besides the change to SetMode (which I will let you figure out on your own) there is
also the added step of loading a palette into to palette memory so the video
processor can decide what colors go with what indices. To demonstrate this we are
going to do a simple program that loads and displays a PCX file.

Displaying a picture

We have nearly all the information we need to display a PCX picture. We are only
lacking two things. First is the format of a PCX file. Second is how to get the PCX
file into our code without an fopen() command. It turns out that the first is very
simple and the second has many ways in which to go about it.

Let us start with getting the picture into our code then we will tackle the issue of
decoding it. The first option, and arguably the simplest is to write (or borrow) a tool
that converts the PCX file into a big array of color indexes and a palette and outputs
them to a c file so we can just compile it and use it. This method also has the
advantage of removing the step of decoding the PCX file on the GBA. Another
method is to include the raw PCX file in our code by converting it into an object file
or by using the .incbin command of the assembler. We will do both of the second
two methods and decode the PCX file on the GBA. Also I will include a tool that runs
on the PC and performs the first option. Creating PC tools may be covered later
when we actually begin making a game.

To create an object file that can be linked directly with our code we can use the
included objcopy tool that comes with gcc or we can use a third party tool that
greatly simplifies this process...let's choose the latter. The following line, if added to
the batch file, will create a linkable .o file from your PCX file. (you will need the_bin20
tool that can be downloaded from darkfaders site. I recommend you place it in your
devkitarm/bin dir).

Bin20 input.pcx output.o linput_data

Then just add output.o to the build.bat list of .o files. Bin2o takes an input file of
any type and creates an output object file and allows you to reference it through the
supplied identifier like this:

extern unsigned short input datall];

main ()

{

int 1i;

for(i = 0; 1 < 240%160; i++)
VideoBuffer[i] = input datali];

The other simple way, is to use the assembler and its built-in .incbin statement. To
do this we simply create a .s file (plain text) and place in it the following:

.global picture
.text
.align 4

picture:
.incbin "data/test.pcx"

You then use the assembler to assemble this code into a .o file.

“.global picture” simply ensures that the “picture” reference will be available to
other files.

“.align 4” ensures that the following data will be on a 32-bit boundary which can be
important for things such as Direct Memory Access.

“.text” simply causes the assembler to place the following data into the binary as
apposed to allocating ram for it.

Finally we come to the label “picture:” and the .incbin “your file” statements.
“.incbin” expands the data from the file in place so that to access the data you just
look at the location tagged by picture. To add more files you simply add another
global statement for each file, another align, and a new label. To access this data
you use exactly the same method as above.

;This is how you would do it with 2 files that needed including
.global picture
.global picture?2
.text
.align 4

picture:

.incbin "data/test.pcx"
.align 4

picture2:
.incbin "data/test2.pcx"

Now that we know how to include data in our code let us take a close look at the PCX
file structure and see if we can get an image onto the screen.

The PCX file structure consists of a header followed by run length encoded data
followed by a 256 color palette of 24-bit RGB values. To decode is actually very
simple. First we read in the header then use that to determine the size of the PCX
and to ensure that it is a 256 color image and not true color. We then decode the
run length encoded data and finally load the palette. Let’s take a look at that PCX
header.

#ifndef PCX H
#define PCX H

typedef struct
{

char manufacturer; //should be 0
char version; //should be 5
char encoding; //should be 1
char bitsPerPixel; //should be 8 for 256 color images
short int xmin, ymin; //coordinates for top left,bottom

right
short int Xmax, ymax;
short int hres; //resolution
short int vres;
char palettel6[48]; //16 color palette if 16 color image
char reserved; //ignore
char colorPlanes; //ignore
short int bytesPerLine;
short int paletteType; //should be 2
char filler[58]; //ignore

}PCXHeader, *pPCXHeader;
#endif

Now, to load the header is quite simple. Assuming we still have our data included as
in the above example we don't even need to copy anything. All we need is to create
a pointer to the begging of that data that is in the form of a PCX header.

PCX header* header = (PCXHeader*)picture;
Access the header like any other struct pointer:

if (header->bitsPerPixel != 8)
{

//something is wrong...exit gracefully

}

Run length encoding is one of the simplest forms of compression available. The
results are good only on images with a lot of similar runs of colors. The way it works
is as follows:

Say you have an image composed of red, green, orange, and blue that looked
something like this:

RRRGGGOOOBBBRRGGGGGBBB

where each letter represented a color in the picture. The run length encoded version
would look something like this:

3R 3G 30 3B 2R 5G 3B

where each number represented the amount of the following color. As you may have
noticed, if the run is only 2 pixels long then there is no compression at all and even
worse, if it is only 1 pixel then it takes twice as much space for the same data ... not
so good. PCX, fortunately, does a bit better than this.

The PCX format is as follows: If the number you run into is greater then 192 then it
represents a run of number minus 192. This means that most single runs will be
represented as a single entry as long as they have a color index of less than 192.
For single runs of color greater than 192 we still have the same issue of storing the
run as 2 bytes.

All we need to do to decode the data portion of the PCX file is loop through the data
and store the pixels as we go, ensuring to repeat the colors appropriately. First let
us build a LoadPCX function that will take a pointer to the PCX data and provide a
place for us to store the decompressed data and palette. Before that we need two
additional structures: one to hold a RGB triplet from our PCX file and one to hold our
image data.

#ifndef GBA IMAGE H
#define GBA IMAGE H

#include <pcx.h>

//holds a rgb triplet
typedef struct
{
unsigned char r,qg,b;
} attribute ((packed)) RGB 24;

//holds a basic image type for loading image files
typedef struct
{

short height,width;

int bpp;

unsigned short* palette;

union

unsigned char* data8;
unsigned short* datal6;
unsigned int* data32;

}i
} sImage, *pslImage;

#endif

The RGB structure is self-explanatory with the exception of all that *__ attribute_ "
crap. GCC has the annoying habit of trying to make its code faster and one of its
tools to that end is to place structures on a 32-bit boundary by padding them to an
even size. The “packed” attribute tells the compiler not to do this and allows us to
overlay an array of our RGB triplets on top of the PCX data and ensures that they will
line up.

The image structure is very basic. It stores height, width and bits per pixel of the
image and also has a pointer to hold the palette and the pixel data. The pixel data
pointer is unioned so we can use one pointer to reference different size chunks of
data. In other words I can write to it in bytes and read it out in shorts or ints which
will prove useful later on.

Here is tutorial 2 source code for demo 1 of day 2:

#include <gba.h> //everything you need for gba devving
#include <gba image.h>//pcx support is not included by default in gba.h

#include <stdlib.h>

extern unsigned char picture[]; //imported using the assembler
extern unsigned char picture2[];//this one with bin2o0

int LoadPCX (unsigned char* pcx, sImage* image)
{

unsigned char c;

int size;

int count;

int run;

int i;

RGB 24* pal; //struct rgb {unsigned char b,g,r;};
PCXHeader* hdr = (PCXHeader*) pcx;
pcx += sizeof (PCXHeader); //move past the header

image->width = hdr->xmax - hdr->xmin + 1 ;
image->height hdr->ymax - hdr->ymin + 1;

size = image->width *image->height;

if (hdr->bitsPerPixel != 8)
return 0;

image->data8 = (unsigned char*)malloc(size);
image->palette = (unsigned short*)malloc (256 * 2));
count = 0;

while (count < size)

{

c = *pcxt+t;
if(c < 192)
image->data8[count++] = c;
else
{
run = ¢ - 192;
c = *pcxt+t;
for(i = 0; i < run; i++)
image->data8[count++] = c;
}
}
pal = (RGB 24%*) (pcx + 1);

for(i = 0; 1 < 256; i++)
image->palette[i] = RGBl6(pal[i]l.r >> 3 ,pallil.g >> 3 , palli]l.b >>

return 1;

}
/1777777777777 /// C code entry (main())/////////////////////

int main ()

{
int i;
sImage imagel, image?2;
if (LoadPCX (picture, &imagel) && LoadPCX (picture2, &image?2))
{
SetMode (MODE_4 | BG2 ENABLE) ;

for(i = 0; 1 < SCREEN WIDTH * SCREEN HEIGHT / 2; i++)

FrontBuffer[i] = imagel.datalo6[i];

for(i = 0; i < SCREEN_ WIDTH w SCREEN HEIGHT / 2; 1++)
BackBuffer[i] = image2.datal6[i];

for(i = 0; i < 256; i++)
BGPaletteMem[i] = imagel.palette[i];

while (1)
{
if (! (REG_KEYS & KEY A))
{
REG_DISPCNT ~= BACKBUFFER;
}
}
}
return 0;
}//end main

The first lines of this code include the appropriate headers, including the one we just
built: "GBA_images.h”. Next we import our data with the following two lines:

extern unsigned char picture[]; //imported using the assembler
extern unsigned char picture2[];//this one with bin2o

The fist one is created in include.s.

.global picture
.text
.align 4

picture:
.incbin "data/test.pcx"

The second by adding the following line to the build.bat file:
bin20 datal\test2.pcx test.o !picture?

Both of these PCX files were created in_Paint Shop Pro from JASC software and saved
as 256 color images. It is possible to save your PCX file as 16-color and as true-
color, both of which will break the LoadPCX function. Before saving ensure you have
reduced your images color palette to 256 colors.

We then move on to the LoadPCX function which takes a pointer to the PCX data and
an image pointer as arguments. The first few lines instantiate some variable that will
be needed further on.

//struct rgb {unsigned char b,g,r;};
RGB 24* pal;

PCXHeader* hdr = (PCXHeader*) pcx;

pcx += sizeof (PCXHeader); //move past the header

These lines set up our palette pointer then point a PCXHeader structure to the

beginning of the PCX data. Then the PCX pointer is advanced past the header so we
can begin work on decoding.

image->width = hdr->xmax - hdr->xmin + 1
image->height = hdr->ymax - hdr->ymin + 1;

I

size = image->width *image->height;

if (hdr->bitsPerPixel != 8)
return 0;

These lines load in the height and width of the image from the header and then
calculate the size of the data. Also we verify that the image is a 256-color image
because that is all our loader can handle.

image->data8 = (unsigned char*)malloc(size);
image->palette = (unsigned short*)malloc (256 * 2));

Next the memory is allocated to hold the data and the palette. And then the
decoding process begins.

while (count < size)
{

c = *pcxt+;

if(c < 192)
image->data8[count++] = c;
else
{
run = ¢ - 192;

c = *pcxt+;

for(i = 0; 1 < run; i++)
image->data8[count++] = c;

}

*pcx++) and determine if it is a run by checking its size. If it is not a run (size <
192) then it is just a color index and its value gets stored in the image data. Ifitis a
run the run length is calculated by subtracting 192. The next byte is the color of the
run so we grab it and the for loop places that color into image data the appropriate
number of times. We keep track of the amount of decoded data by the count
variable which is incremented every time we write to image data. When count
reaches our precalculated size then we know we have decoded all the data.

This loop does the bulk of LoadPCX’'s work. We grab the first data byte (c =

Finally, we point our RGB_24 palette to the PCX palette and convert it to the 16 bit
palette needed by the GBA.

pal = (RGB 24%*) (pcx + 1);

for(i = 0; 1 < 256; i++)
image->palette[i] = RGBl6(pal[i].r >> 3 ,pallil.g >> 3 , pallil.b
>> 3);

The only tricky part is the actual conversion. Since the PCX palette components are
8 bit they can be a maximum of 255 whereas the GBA can only use up to 31. TO
compensate we divide each component by 8 (365 / 8 = 32) which is the same as
right shifting by 3. We use our RGB16 macro from before to convert the separate
components into a 16-bit color.

Input

Before moving on to main() there is a topic that needs to be discussed, and that is
input. Getting input from the keypad is extremely simple. There is a single register
that stores the state of the key presses. It is defined in “gba_registers.h” as
REG_KEYS and resides at 0x40000130. When a key is pressed the corresponding bit
in the register is cleared. To check for a key press you just AND the register with the
appropriate bit and if it is set then the key is NOT pressed. Here is “gba_keys.h":

#ifndef GBA KEYPAD H
#define GBA KEYPAD H

#include "GBA types.h"

#define KEY A BITO
#define KEY B BIT1
#define KEY SELECT BIT2
#define KEY START BIT3
#define KEY RIGHT BIT4
#define KEY LEFT BITS5
#define KEY UP BIT6
#define KEY DOWN BIT7
#define KEY R BIT8
#define KEY L BITY
#endif

Now we can move on to main.

if (LoadPCX (picture, &imagel) && LoadPCX (picture2, &image?2))

This line loads the PCX files into the two images. If either image are not of the
correct format LoadPCX returns 0 and the rest of the program will not be carried out.

SetMode (MODE_4 | BG2_ ENABLE) ;

for(i = 0; i < SCREEN_ WIDTH w SCREEN HEIGHT / 2; 1++)
FrontBuffer[i] = imagel.datal6[i];

for(i = 0; i < SCREEN_ WIDTH w SCREEN HEIGHT / 2; 1++)
BackBuffer[i] = image2.datal6[i];

for(i = 0; i < 256; i++)
BGPaletteMem[i] = imagel.palette[i];

First the mode is set to 4 and background 2 is enabled. Background 2 must be
enabled for all bitmap modes (mode 3, 4, 5) in order for anything to appear on the
screen. Next we load our images into video memory. The first picture is loaded into
the FrontBuffer (defined in “gba.h” as (u16*)0x600:0000) and the second is loaded
into the BackBuffer ((u16*)0x600:A000). You will notice that the image is loaded
using it's 16-bit data pointer. All three data pointers point to the same location due
to the union but as we can not access the video hardware one byte at a time we
must use datal6 or data32.

Finally we load the palette. There is only room for one background palette and since
both images use the same palette we just load in the first pictures palette. If your
PCX images where designed using different palettes then you will see some funky
coloring when you switch to the other image.

while (1)
{
if (! (REG_KEYS & KEY A))
{
REG_DISPCNT ~= BACKBUFFER;
}
}

This last little bit puts the code into an infinite loop that monitors the A key. If the
key press is detected it simple flops the back buffer bit with an xor ('A"). Since we
have put no proper delay into our code this switch is extremely rapid which you will
notice if you hold the A key down.

Blanking periods

Before moving on to raster graphics we need to talk a bit more about how the GBA
renders the display. Much like a normal CRT, the LCD on the GBA goes line by line.
The time in-between each scan line is known as the “Horizontal Blanking Period” or
Hblank for short. During this time nothing is being rendered on screen and data can
be altered to cause some interesting effects (Fzero racetracks for instance). After
the last scan line is complete and before starting the process over there is a time of
rest known as the “Vertical Blanking Period” or Vblank for short. It is during this
time that changes are normally made to the video hardware to ensure that the
screen is not changed mid-draw; an issue called tearing which, when unintentional,
causes very ugly artifacting.

Display HBlank

VBlank

It would be nice if we could alter our PCX display program to wait for this vblank
period before switching between the buffers. Let’s do that. First we need to look at
another register called REG_DISPSTAT

F E D C B A 9 8 7 6 5 4 3 |2 10

Y Trigger / / | Ytri Hirq Yirq YT HB YB

REG_DISPSTAT @ 0x400:0004

Bit 0 (YB): This bit is set if in Yblank period

Bit 1 (HB): This bit set if in Hblank period

Bit 2 (YT): This bit is set if past the scan line indicated by Y trigger

Bit 3 (Yirq): This bit, when set, will cause Yblank to generate an interrupt

Bit 4 (Hirq): This bit, when set, will cause Hblank to generate an interrupt

Bit 5 (Ytri): This bit, when set, will cause Y Trigger to generate an interrupt

Bit 8-F(Y Trigger): When the Ytri bit is set the 8-bit value stored in Y trigger
corresponds to a scan line. When that scan line is reached an interrupt is generated

Let us build a WaitForVblank function that sits in a loop until the beginning of the
Vblank.

void WaitForVblank (void)

{
while (! (REG _DISPSTAT & DISPSTAT VB));
while (REG_DISPSTAT & DISPSTAT VB);

}

First the function ensures that we are not already in the Vblank because we only
want it to return at the start of the Vblank. It then returns once the Vblank bit is
set. This is where the volatile keyword is crucial. The compiler otherwise would
realize we are checking a variable repeatedly and store it in a CPU register to make
things work faster, the volatile ensures that it is loaded each time it is checked
otherwise the changes to the bits made by the video hardware would go unnoticed.
Later when we learn of interrupts we will find a much more power friendly way to
wait for the VBlank. Finally, we place this function in our tutor2_1.c and make the
following change:

while (1)
{
WaitForVblank () ;

if (! (REG_KEYS & KEY A))
{
if(REG_DISPCNT & BACKBUFFER)
REG_DISPCNT &= ~BACKBUFFER;
else
REG_DISPCNT |= BACKBUFFER;

Hopefully this will prevent the tearing you noticed before. Keep in mind that if you
hold down the A key, the image will still change 60 times per second. If you were
building this file as we went now would be a good time to put it all together and
compile it and test it out on your hardware. If you have not built an Xboo cable yet
or have not purchased a Flash cart yet you will have to be content looking at your
new creation in the emulator.

Raster Graphics

Raster graphics are the means by which all the early games were created. It simply
means to render to a display on a per-pixel basis. We are going to let the GBA
hardware do most of our rendering for us. But, it is sometimes fun to do things in
software so a few simple raster graphics techniques will be discussed in this section.

Although software rasterization is little more than a novelty on the GBA there is a
reason why I am including it here. The only topics covered will be Lines and line
based polygons. This sections main benefit is not the raster graphics techniques;
instead, its purpose is to serve as an introduction to matrix math and rotation which
are easily demonstrated using lines and polygons.

Computer line drawing has been the focus of many books. There are a myriad of
ways to go about rendering a line on the screen. For our purposes we are going to
look at only one. It is relatively fast and easy to understand, and has the added
benefit of being the most popular line drawing algorithm out there.

The algorithm we are going to concern ourselves with is known as Bresenham (after
some guy likely named Bresenham). The premise of the algorithm is as follows:
First you figure out which direction the line is changing the fastest in. In other words
if it is taller then it is wide it is changing fastest in the y direction. You then loop
through all the values of x or y in that direction and check to see if you need to
change in the other direction each time through.

Normally to calculate the y position of a line when you know two points on that line
you would plug it into the equation of the form:

Y-y=m(X-x)

Where x and y are any point on the line and the slope is calculated by dividing the
difference in y values of any two points on the line by the difference in those two
points corresponding x values.

Because this requires both a divide (which the GBA can only do in software) and a
series of multiplies of fractional values, this method suffers in the speed area.

Bresenham found a way to do it with only integer math, addition, and subtraction.
The method involves keeping track of an error term. After you have figured out
whether you are tracing the line in the x or the y direction you check, every iteration,
to see if you need to step in the other direction. This is done using an error term.
For instance if you decided the x difference is greater you would start at x1 and
increment until you reached x2 each time adding y difference to the error term. If
the error term reaches x difference in size then you know it is time to increment the
y value. The closer the difference in x values is to the difference in y values the more
often the error term will overflow causing you to step in the y direction.

For example; if you had a horizontal line then the x difference would be the length of
the line and the y difference would be zero. You step through the x values
incrementing the error term by the y difference (0 in this case). Since the error term
is always less then the x difference you will never increase the y value and the line
will be plotted as a strait horizontal.

Another example would be a 45 degree line were x difference and y difference are
equal. In this case you would loop through the x values adding y difference to the
error term. Every iteration would cause the error term to reach the x difference
value causing you to add one to the y value.

For a final example consider a case were the slop is 2. This means that the line
moves twice the distance in the x direction as it does in the y. If you loop through
the x’s adding y difference to the error term then every other iteration the error term
will reach x difference and you will add 1 to y which is exactly what you want.

It is now time to see the code for a simple Bresenham line drawing algorithm.

void Drawline (int x1,int yl,int x2,int y2,unsigned short color)
{

int yStep = 240;

int xStep 1g

int xDiff = x2 - x1;

int yDiff = y2 - yl;

int errorTerm = 0;
int offset = yl1 * 240 + x1;
int 1i;

if (yDiff < 0)

{
yDiff = -yDiff;
yStep -yStep;

if (xDiff < 0)

xDiff = -xDiff;
xStep -xStep;

if (xDiff > yDiff)
for (i = 0; 1 < xDiff + 1; i++)
{ VideoBuffer[offset] = color;
offset += xStep;

errorTerm += yDiff;

if (errorTerm > xDiff)

{

errorTerm —-= xDiff;
offset += yStep;
}
}
}//end if xdiff > ydiff
else
{
for (i = 0; i < yDiff + 1; i++)
{
VideoBuffer|[offset] = color;

offset += yStep;
errorTerm += xDiff;

if (errorTerm > yDiff)
{

errorTerm -= yDiff;
offset += xStep;

Analyzing the line drawing code
The first thing we do is declare the variables we will be using.

int yStep = 240;

int xStep 1g

int xDiff x2 - x1;
int yDiff = y2 - yl;

int errorTerm = 0;
int offset = yl1 * 240 + x1;

int 1i;

The step variables are necessary because we access our video buffer as an array and
if you will recall, adding one to that array will move one pixel in the x direction but to
move one in the y direction we must move an entire scan line (or 240 pixels). xDiff,
yDiff, and errorTerm are exactly as described above and i is simply an indexing
variable.

The offset value is what we will use to index our array. For now VideoBuffer[offset]
points to the first point on our line.

if (yDiff < 0)

{
yDiff = -yDiff;
yStep = -yStep;

if (xDiff < 0)

xDiff = -xDiff;
xStep -xStep;

}

Next we must ensure that our xDiff and yDiff are positive values because the user
may not enter the points like we would prefer. If they are backwards that is fine.
We will just draw our line backwards by negating the value of the steps.

if (xDiff > yDiff)
{
for (1 = 0; 1 < xDiff + 1; i++)
{
VideoBuffer[offset] = color;

offset += xStep;
errorTerm += yDiff;

if (errorTerm > xDiff)
{
errorTerm -= xDiff;
offset += yStep;
}
}
}//end if xdiff > ydiff

If the x difference is larger, we step through all the x values from point 1 to point 2.
We increase our offset by the xStep each iteration. Also, the error term is
incremented by y difference until the error term is greater than or equal to the x
difference. We then reset the error term by subtracting x difference (instead of
setting it to zero like you may be tempted to do).

If the y difference is only slightly less then x difference, resetting the error term to
zero would cause the y value to only be incremented every other iteration when it
needs to be incremented much more often.

After resetting the error term, we increase the offset by one y (240 pixels) and then
begin a new iteration. The process for if yDiff is greater is nearly identical to that
above.

Here is a tutorial 2 of day 2 which draws some lines. Only the main() source is
posted since the rest of the code is already spread about this chapter.

/7777777777777 /// C code entry (main())/////////////////////
int main ()

{
SetMode (MODE 3 | BG2 ENABLE) ;

ul6é color = 0;
u8 x1 = 0;

u8 x2 = 0;

u8 yl = 0;

ug8 y2 = 0;
while (1)

{
WaitForVblank () ;
DrawlLine (x1,yl,x2,y2,color);

1f(x1l < 239)
x1++;
else
x1l = 0;

if(x2 > 0)
Kil==g
else x2 = 239;

if(y2 < 159)
y2++;
else
y2 = 0;

if(yl > 0)
yl-=7
else
yl = 159;

if (color < 32*32*32 - 1)
color++;

else
color = 0;

}

return 0;
}//end main

This code just declares a few variables to keep track of x and y and increments or
decrements them along with the color to plot a changing array of lines on the screen.

That is it for line drawing and lines will be the only primitive we talk about as far as
raster graphics go. If you are dying to create your own lighting fast 3D triangle
texture mapper or, perhaps, just want to know a bit more then check out the
recommended reading section that is at the end of this chapter.

Rotation and Matrices

You may be asking yourself why we went to all the trouble to learn about lines. The
real reason is so I could show you how to deal with rotation and matrices. In order to
understand how to rotate a point you must have a basic understanding of the Sin
and Cos functions. If you will recall from geometry class Sin and Cos are functions
that describe circular behavior.

Sin and Cos are best understood through the use of the “Unit Circle”. The unit circle
is simply a circle of radius 1.0 that is centered on the origin.

i

.

(-1,0) — cosf — }(1,0)

(0.-17

The nice thing about the Unit Circle is that any point on the circle can be calculated
using sin and cos and by looking at the angle formed between the positive X axis and
the line that extends from the origin to the point.

To rotate a point by an angle of theta about the origin the following equations are
needed:

newX= cos(theta) * x - sin(theta) * y;
newY= sin(theta) * x + cos(theta) * y;

Of course, it is usually the case that you don’t want to rotate the point around the
origin. To rotate it about an arbitrary point you simply translate the x, y in such a
manner as to make the arbitrary point the origin. How? If you need to rotate the
point (x, y) about the point (a, b) you simply translate the point by subtracting (a,
b), do the rotation, and then translate back by the same amount.

X
y

=Xx-a;
=y-b;

newX= cos(theta) * x - sin(theta) * y;
newY= sin(theta) * x + cos(theta) * y;

newX = newX + a;
newY = newY+ b;

With this is mind let us write a demo that will rotate a square about a point on the
screen.

Before we begin the code for this demo there is one outstanding issue. Cos() and
Sin() functions are about as slow as a function can get..and worse they deal in
doubles and Radians. In order to speed things up we are going introduce our first
Look Up Table (LUT). A LUT is a pre-calculated array of values that eliminates the
need to do real-time calculations.

There are two ways to generate the LUTs. The first is to use the math library and
build them when our program first runs. This works, but it takes up quite a bit of
RAM not to mention adds an annoying pause to the beginning of your demo. We will
be using the second method which involves simply creating the LUT in a windows
program and outputting that data to a binary file. Here is the source code that
creates the LUT:

It fills the array with Fixed point values of the form 2.14 (see Appendix A). It then
writes these values to a binary file that we can include in our source.

#include <math.h>
#include <stdio.h>

#define PI 3.14159
#define RADIAN (n) ((((double)n)/180.0)*PI)

int main (int argc, char* argvl[])
{

FILE* £f;

int angle;

short int COS[360];
short int SIN[360];

for (angle = 0; angle < 360; angle+t+)

{
COS[angle] = (short int) (cos (RADIAN (angle)) * (double) (1<<14));
SIN[angle] (short int) (sin (RADIAN (angle)) * (double) (1<<14));

}
f = fopen("lut.bin","wb");

fwrite (COS,360 * 2,1,f);
fwrite (SIN, 360 * 2,1,f);

fclose (f);

return 1;

Now that we have a binary file with our LUT stored inside we can just include it by
one of the methods discussed in the previous chapter. For this demo I chose bin2o.

The demo source code follows. The code that was already covered has been
removed to conserve space.

#include <gba.h>
extern short MATH LUT[];

short* COS = &MATH LUT[O];
short* SIN = &MATH_LUT[360];

typedef struct
{

int x, y;
}sPoint2D;

typedef struct
{
int %, y;
sPoint2D p[4];
unsigned short color;
}sBox;

//WaitForVblank and Draw line not shown...code 1s same as before
void DrawBox (sBox* box, int angle)

{
sPoint2D pl4];

pl0].x = ((COS[angle] * box->p[0].x - SIN[angle] * box->p[0].y)
>> 14) + box->x;
plO0]l.y = ((SIN[angle] * box->p[0].x + COS[angle] * box->p[0].y)

>> 14) + box->y;

pll].x = ((COS[angle] * box->p[l].x - SIN[angle] * box->p[l].y)
>> 14) + box->x;
pll]l.y = ((SIN[angle] * box->p[l].x + COS[angle] * box->p[l].y)

>> 14) + box->y;

pl2] .x = ((COS[angle] * box->p[2].x - SIN[angle] * box->p[2].y)
>> 14) + box->x;
pl2].y = ((SIN[angle] * box->p[2].x + COS[angle] * box->p[2].y)

>> 14) + box->y;

pl3].x = ((COS[angle] * box->p[3].x - SIN[angle] * box->p[3].y)

>> 14) + box->x;
pl3].y = ((SIN[angle] * box->p[3].x + COS[angle] * box->p[3].y)
>> 14) + box->y;

DrawLine (p[0] .x,p[0].y,p[1l].%x,p[1l].y,box->color) ;
DrawLine (p[l].x,p[l].y,p[2].%,p[2].y,box->color) ;
DrawLine (p[2] .x,p[2].y,p[3].%,p[3].y,box->color) ;
DrawLine (p[3].x,p[3].y,p[0].%,p[0].y,box->color) ;

}

void ClrScreen (void)
{
int 1i;
for(i = 0; 1 < SCREEN_HEIGHT x SCREEN_WIDTH; i++4)
VideoBuffer([i] = 0;
}

int main ()
{

int angle = 0;

sBox box = {
100, 80, //x,y
{
{-40,40}, //points
{40,40},
{40,-40},
{-40,-40}
s
RGB16(31,0,0) //color
b

SetMode (MODE_3 | BG2 ENABLE) ;

while (1)
{
WaitForVblank () ;
ClrScreen() ;
DrawBox (&box, angle % 360);
angle++;
}
return 0;
}//end main

First, you will notice that the identifier I sent to bin2o was MATH_LUT. This array will
allow me access both tables since I know the COS table is 360 entries long and that
the SIN table immediately follows.

extern short MATH LUT[];
short* COS = &MATH LUT[O];
short* SIN = &MATH LUT[360];

I just create a reference array called SIN and COS that begin at the appropriate
place in my LUT. Next we have two structures that simplify the data organization.

One defines a point as two integers (x, y) the other defines a box as being a set of
points, a color, and a center point.

typedef struct
{

int %, y;
}sPoint2D;

typedef struct
{
int x, y;
sPoint2D p[4];
unsigned short color;
}sBox;

Then follows my WaitForVblank code as well as the DrawlLine code we saw before.
You will have to refer to earlier sections for a description of that code. Next comes
the interesting part: DrawBox().

void DrawBox (sBox* box, int angle)

{
sPoint2D pl4];

pl0].x = ((COS[angle] * box->p[0].x - SIN[angle] * box->p[0].y) >>
14) + box->x;
pl0]l.y = ((SIN[angle] * box->p[0].x + COS[angle] * box->p[0].y) >>

14) + box->y;

pll].x = ((COS[angle] * box->p[l].x - SIN[angle] * box->p[l].y) >>
14) + box->x;
pll]l.y = ((SIN[angle] * box->p[l].x + COS[angle] * box->p[l].y) >>

14) + box->y;

pl2] .x = ((COS[angle] * box->p[2].x - SIN[angle] * box->p[2].y) >>
14) + box->x;
pl2].y = ((SIN[angle] * box->p[2].x + COS[angle] * box->p[2].y) >>

14) + box->y;

pl3].x = ((COS[angle] * box->p[3].x - SIN[angle] * box->p[3].y) >>
14) + box->x;
pl3].y = ((SIN[angle] * box->p[3].x + COS[angle] * box->p[3].y) >>

14) + box->y;

DrawLine
DrawLine
DrawLine
DrawLine

plO0].x,pl v,pl x,pl[l].y,box->color
pll].x,pl v,pl x,pl2].y,box->color
pl2].x,p[2].y,p[3].%x,p[3].y,box->color
pl3].x,pl v,pl x,p[0].y,box->color

—~ o~~~

)7
)7
)7
)7

This code creates a temporary array of points to hold the rotated box. It then uses
the formula from above to rotate each point. By giving the box a center and defining
its points as relative to that center the rotation is quite simple... we just rotate it
about the center (which is the box’s origin) and then translate it out to the location
of the center with a simple addition. The shift right 14 that you see is a conversion
from the fixed point LUT to integer. If this is unclear be sure and reference Appendix

A. We then connect the points with 4 calls to our DrawLine function from earlier. This
next function clears the screen and is necessary else we wind up with tracers of our
rotating box that would quickly fill the screen. I believe the code speaks for itself.

void ClrScreen (void)
{
int 1i;
for(i = 0; 1 < SCREEN_HEIGHT x SCREEN_WIDTH; i++4)
VideoBuffer([i] = 0;
}

Finally we move to the main entry point of our program. The demo enters an infinite
loop where it draws the box at an incrementing angle. The angle is modded with 360
to ensure we stay within the bounds of our SIN and COS arrays.

int main ()
{

int angle = 0;

sBox box = {
100, 80, //x,y
{
{-40,40}, //points
{40,40},
{40,-40},
{-40,-40}
s
RGB16(31,0,0) //color
b

SetMode (MODE_3 | BG2_ ENABLE) ;

while (1)
{
WaitForVblank () ;

ClrScreen() ;
DrawBox (&box, angle % 360);
angle++;

}
return 0;
}//end main

The only tricky portion might be the declaration of the box. If the notation is
unfamiliar now would be a good time to refresh your memory on that sort of thing.
Feel free to look at Appendix B which covers a bit of C and some of the less common

things that you may have missed in your CS 101 class or in your C for dummies
book.

3D Rotation

It turns out that to rotate a 3D point about an axis is something we already know
how to do. In fact we just spent the last few pages doing it. In our case we were
rotating a point about the z axis and all the z components where 0 but it just so
happens that to rotate about the z axis you leave the z components as is anyway.
Let’s look at the equation to rotate a point about the x, y, and z axis.

Z axis (what we already know)
newX = cos(angle) * x - sin(angle) * y;
newY = sin(angle) * x + cos(angle) * y;

newZ = z;
X axis
newX = x;

newX = cos(angle) * y — sin(angle) * z;
newZ = sin(angle) * y + cos(angle) * z;

Y axis
newX = cos(angle) * x + sin(angle) * z;
newY = vy;

newZ = -sin(angle) * x + cos(angle) * z;

To rotate a point by an angle about each axis we must perform each operation
specified above. Generally speaking when you are doing 3D rotations you will need
to rotate about each axis every time. This may seem like a lot of calculations to you
and that is because it is...there is a much more efficient means of combining all these
calculations and if you have not guessed already it is Matrices.

Matrices

Most of you have probably seen matrices before so this section should not be all that
new. Matrices are generally used to represent equations in an organized manner
making manipulation of multiple equations at the same time a simple manner.

If we can find a way to stick our rotation code in matrices the math not only
becomes simpler to deal with but also much faster. Here is why it is simpler: Let us
say we have a point (x,y,z) and we were to somehow represent this point in a matrix
and also represent the rotation formulas for each axis in three other matrices. We
will call our point [P] and our three rotation matrices [x], [y], and [z]. To rotate our
point about the three axes we simply do the following.

[p1 = [p]1 * [x] * [y] * [2]

We just multiply the 4 matrices together. Now, once you understand how to multiply
matrices, you will find that this method results in the exact same number of
calculations. So how is it faster? One of the great properties of matrices is that they
are associative for multiplication. What this means is that:

[p1 * [x] * [yl * [z] = [p] * ([x] * [y] * [2])

This does not change much when dealing with a single point, but when we have
many points to rotate by the same rotation matrices then we can pre-compute [x] *

[y] * [z] and multiply [P] by a single matrix, greatly reducing the number of
calculations required.

[R] = [x] * [y] * [2];
[P1] = [P1] * [R];
[P2] = [P2] * [R];

That is not all! Besides rotation we also often need to translate and scale our
objects. By storing the translation and scaling equations into a matrix we can
concatenate 5 calculations into a single matrix and multiply that matrix by all our
points.

You should understand now why matrix math is crucial to video game graphics but
you are probably feeling a bit clueless about the details of actually using the
matrices. First let’s figure out how to multiply two matrices together and then we
will figure out how to place all this data into our matrices.

Let us say you had two matrices with the following elements:

[A]1={1, 2, 3, [B]1={1, 2,
4, 5, 6, 3, 4,
7, 8, 9} 5, 6}

The mathematical formula for multiplying these together would be:

[AB]; = SIGMA [A]i[B]y

Where sigma represents the sum of the products of the elements in [a] times the
elements in [B] according to the indices specified. In English multiplication is done
as follows.

We look at the first row of [A] which is 1,2,3 and the first column of [B] 1,3,5

These must be the same length which means that to multiply two matrices together
the number of columns in [A] must equal the number of rows in [B].

We then multiply the first element in the first row of [A] times the first in [B] and
add it to the second and then to the third. This becomes the first element in [AB].

1*¥1 + 2*%3 + 3*%5 = 22

This makes [AB] =
227
??
??

you then take the first row of [A] and the second column of [B]

1*2 + 2*%4 + 3*6 = 22
[AB] =

2228

? 2

? 2

Then the second row of [A] and the first column of [B]

4*1 + 5%3 + 6*5 = 49
4*2 + 5%4 + 6%6 = 66

[AB] =
2228
4966

? 2

And finally the last row and first and second column:

7*1 + 8*3 + 9*%*5 =76
7*2 + 8*%4 + 9%6 = 10

[AB] =
22 28
49 66
76100

Okay now that we know how to multiply matrices we can set up our point as a 3x1
matrix and try to find the correct matrix to create our rotation.

[P]1=1x vy, z}
First let us do the rotation about the z axis.
[z]={ cos(theta) , sin(theta), O,
-sin(theta), cos(theta), O,
o, o, 1}
[P] * [Z] becomes:

{x*cos(theta) + y* -sin(theta) + 0, x*sin(theta) + y*cos(theta) + O,
0+0+2z}

These entries are exactly of the form we had above for rotation about the z axis.

[Y]={cos(theta), O, -sin(theta),
o, 1, o,
sin(theta), O, cos(theta, 1)}

[X1={1, o, o,
o, cos(theta) , sin(theta),
o, -sin(theta), cos(theta) }

To scale a point simply means to multily the x,y,z by some value. To do this in
matrix form is quite simple

[P1={xy,z}*{ zx, O, o,
0I zyl 0I
o, o, zz}y = { x*zx, y*yz, z*zz}

In this case zx, zy, and zz represent the scaling factors for each dimension.

Translation by matrices requires a bit of trickery. We must expand our point matrix
to be equal to the following:

[P]1={xy,2 1}

Now, our translation matrix [T] can be written:

[T1={1, o, o, o,
14 1’ 0I 0I

o, o, 1, o,
dx, dy, dz 1}

This makes [P] * [T] = {x + dx, y+ dy, z+dz, 1}

Neglecting the 1 at the end and assuming that dx, dy, and dz are the translation
amounts then we have exactly what we need. In order to concatenate out
translation matrix with the others they must be expanded to 4x4 as well. For
example [Z] will now be:

[z]={ cos(theta) , sin(theta), O,
-sin(theta), cos(theta), O,
o, o, 1,
o, o, o,

4

}

The others are expanded similarly. Keep in mind that although this looks like it
takes up more space this is in fact an abstraction and when we implement these
multiplies in code we will only store the needed data and insert the 1’s and 0’s were
needed.

=000

As you may have guessed we are not going to be doing to much 3D on the GBA, but
there are certain tasks that the hardware performs that simulate 3D and those tasks
are based on the theory above.

Although now would be an excellent time to do a 3D wire cube demo I just don't
have the energy. This chapter has already reached the 35 page mark and that is a
bit too large for me. If anyone would like to do a cube demo that uses my code and
my headers I will post it in this tutorial. Please do not sacrifice any readability for
performance unless necessary. For more on raster graphics I recommend the
following:

Books:
Abrash, Michael. Zen of Graphics Programming.
LaMothe, Andre. Tricks of The 3D Game Programming Gurus.

Internet:
http://www.byte.com/abrash/ This is Abrash’s complete black book of programming
in an online format

This finally sums up day 2. We learned a lot today, but tomorrow things really start
to move along. If you had any trouble compiling the demos be sure and check your
copy paste and compare it to the downloadable versions of the source. Be sure and
test your demos on hardware because the emulator is just downright dull when it
comes down to it. So build an xboo or buy a flash cart!

