# **SNES Registers**

This page is based on the great work of Anomie, Qwertie and Martin Korth. If this document helps you and you feel like giving back, consider a donation to the Nocash Project, because a lot of info on this page has been taken from there.

## **Address Bus B Registers**

| Register                                          | Address | Name                  | Style  | Access | Timing                        |
|---------------------------------------------------|---------|-----------------------|--------|--------|-------------------------------|
| Screen Display                                    | \$2100  | INIDISP               | single | write  | any time                      |
| Object Size and Object                            | \$2101  | OBSEL                 | single | write  | f-blank, v-blank              |
| OAM Address and Priority<br>Rotation (Low)        | \$2102  | OAMADDL               | single | write  | f-blank, v-blank              |
| OAM Address and Priority<br>Rotation (High)       | \$2103  | OAMADDH               | single | write  | f-blank, v-blank              |
| OAM Data Write                                    | \$2104  | OAMDATA               | single | write  | f-blank, v-blank              |
| BG Mode and BG Character Size                     | \$2105  | BGMODE                | single | write  | f-blank, v-blank, h-<br>blank |
| Mosaic Size and Mosaic Enable                     | \$2106  | MOSAIC                | single | write  | f-blank, v-blank, h-<br>blank |
| BG1 Screen Base and Screen<br>Size                | \$2107  | BG1SC                 | single | write  | f-blank, v-blank              |
| BG2 Screen Base and Screen<br>Size                | \$2108  | BG2SC                 | single | write  | f-blank, v-blank              |
| BG3 Screen Base and Screen<br>Size                | \$2109  | BG3SC                 | single | write  | f-blank, v-blank              |
| BG4 Screen Base and Screen<br>Size                | \$210A  | BG3SC                 | single | write  | f-blank, v-blank              |
| BG Character Data Area<br>Designation (BG1 & BG2) | \$210B  | BG12NBA               | single | write  | f-blank, v-blank              |
| BG Character Data Area<br>Designation (BG3 & BG4) | \$210C  | BG34NBA               | single | write  | f-blank, v-blank              |
| BG1 and Mode 7 Horizontal<br>Scroll               | \$210D  | BG1HOFS and<br>M7HOFS | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG1 and Mode 7 Vertical Scroll                    | \$210E  | BG1VOFS and<br>M7VOFS | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG2 Horizontal Scroll                             | \$210F  | BG2HOFS               | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG2 Vertical Scroll                               | \$2110  | BG2VOFS               | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG3 Horizontal Scroll                             | \$2111  | BG3HOFS               | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG3 Vertical Scroll                               | \$2112  | BG3VOFS               | dual   | write  | f-blank, v-blank, h-<br>blank |
| BG4 Horizontal Scroll                             | \$2113  | BG4HOFS               | dual   | write  | f-blank, v-blank, h-<br>blank |

Last update: 2019/08/03 03:37

| Register                            | Address | Name    | Style  | Access | Timing                        |
|-------------------------------------|---------|---------|--------|--------|-------------------------------|
| BG4 Vertical Scroll                 | \$2114  | BG4VOFS | dual   | write  | f-blank, v-blank, h-<br>blank |
| Video Port Control                  | \$2115  | VMAIN   | single | write  | f-blank, v-blank              |
| VRAM Address (Low)                  | \$2116  | VMADDL  | single | write  | f-blank, v-blank              |
| VRAM Address (High)                 | \$2117  | VMADDH  | single | write  | f-blank, v-blank              |
| VRAM Data Write (Low)               | \$2118  | VMDATAL | single | write  | f-blank, v-blank              |
| VRAM Data Write (High)              | \$2119  | VMDATAH | single | write  | f-blank, v-blank              |
| Mode 7 Settings                     | \$211A  | M7SEL   | single | write  | f-blank, v-blank              |
| Mode 7 Matrix A                     | \$211B  | M7A     | dual   | write  | f-blank, v-blank, h-<br>blank |
| Mode 7 Matrix B                     | \$211C  | M7B     | dual   | write  | f-blank, v-blank, h-<br>blank |
| Mode 7 Matrix C                     | \$211D  | M7C     | dual   | write  | f-blank, v-blank, h-<br>blank |
| Mode 7 Matrix D                     | \$211E  | M7D     | dual   | write  | f-blank, v-blank, h-<br>blank |
| Mode 7 Center X                     | \$211F  | M7X     | dual   | write  | f-blank, v-blank, h-<br>blank |
| Mode 7 Center Y                     | \$2120  | M7Y     | dual   | write  | f-blank, v-blank, h-<br>blank |
| CGRAM Address                       | \$2121  | CGADD   | single | write  | f-blank, v-blank, h-<br>blank |
| CGRAM Data Write                    | \$2122  | CGDATA  | dual   | write  | f-blank, v-blank, h-<br>blank |
| Window Mask Settings (BG1 & BG2)    | \$2123  | W12SEL  | single | write  | f-blank, v-blank, h-<br>blank |
| Window Mask Settings (BG3 & BG4)    | \$2124  | W34SEL  | single | write  | f-blank, v-blank, h-<br>blank |
| Window Mask Settings (OBJ and MATH) | \$2125  | WOBJSEL | single | write  | f-blank, v-blank, h-<br>blank |
| Window 1 Left Position              | \$2126  | WH0     | single | write  | f-blank, v-blank, h-<br>blank |
| Window 1 Right Position             | \$2127  | WH1     | single | write  | f-blank, v-blank, h-<br>blank |
| Window 2 Left Position              | \$2128  | WH2     | single | write  | f-blank, v-blank, h-<br>blank |
| Window 2 Right Position             | \$2129  | WH3     | single | write  | f-blank, v-blank, h-<br>blank |
| Window Mask Logic (BGs)             | \$212A  | WBGLOG  | single | write  | f-blank, v-blank, h-<br>blank |
| Window Mask Logic (OBJ and<br>MATH) | \$212B  | WOBJLOG | single | write  | f-blank, v-blank, h-<br>blank |
| Main Screen Destination             | \$212C  | ТМ      | single | write  | f-blank, v-blank, h-<br>blank |
| Subscreen Destination               | \$212D  | TS      | single | write  | f-blank, v-blank, h-<br>blank |
| Window Area Main Screen<br>Disable  | \$212E  | TMW     | single | write  | f-blank, v-blank, h-<br>blank |

2024/05/19 10:32

| Register                                    | Address | Name        | Style  | Access | Timing                        |
|---------------------------------------------|---------|-------------|--------|--------|-------------------------------|
| Window Area Subscreen Disable               | \$212F  | TSW         | single | write  | f-blank, v-blank, h-<br>blank |
| Color Math Registers                        | \$2130  | CGWSEL      | single | write  | f-blank, v-blank, h-<br>blank |
| Color Math Registers                        | \$2131  | CGADSUB     | single | write  | f-blank, v-blank, h-<br>blank |
| Color Math Registers                        | \$2132  | COLDATA     | single | write  | f-blank, v-blank, h-<br>blank |
| Screen Mode Select Register                 | \$2133  | SETINI      | single | write  | f-blank, v-blank, h-<br>blank |
| Multiplication Result Registers             | \$2134  | MPYL        | single | read   | f-blank, v-blank, h-<br>blank |
| Multiplication Result Registers             | \$2135  | MPYM        | single | read   | f-blank, v-blank, h-<br>blank |
| Multiplication Result Registers             | \$2136  | MPYH        | single | read   | f-blank, v-blank, h-<br>blank |
| Software Latch Register                     | \$2137  | SLHV        | single |        | any time                      |
| OAM Data Read Register                      | \$2138  | OAMDATAREAD | dual   | read   | f-blank, v-blank              |
| VRAM Data Read Register (Low)               | \$2139  | VMDATALREAD | single | read   | f-blank, v-blank              |
| VRAM Data Read Register<br>(High)           | \$213A  | VMDATAHREAD | single | read   | f-blank, v-blank              |
| CGRAM Data Read Register                    | \$213B  | CGDATAREAD  | dual   | read   | f-blank, v-blank              |
| Scanline Location Registers<br>(Horizontal) | \$213C  | OPHCT       | dual   | read   | any time                      |
| Scanline Location Registers<br>(Vertical)   | \$213D  | OPVCT       | dual   | read   | any time                      |
| PPU Status Register                         | \$213E  | STAT77      | single | read   | any time                      |
| PPU Status Register                         | \$213F  | STAT78      | single | read   | any time                      |
| APU IO Registers                            | \$2140  | APUIO0      | single | both   | any time                      |
| APU IO Registers                            | \$2141  | APUI01      | single | both   | any time                      |
| APU IO Registers                            | \$2142  | APUIO2      | single | both   | any time                      |
| APU IO Registers                            | \$2143  | APUIO3      | single | both   | any time                      |
| WRAM Data Register                          | \$2180  | WMDATA      | single | both   | any time                      |
| WRAM Address Registers                      | \$2181  | WMADDL      | single | write  | any time                      |
| WRAM Address Registers                      | \$2182  | WMADDM      | single | write  | any time                      |
| WRAM Address Registers                      | \$2183  | WMADDH      | single | write  | any time                      |

# **Old Style Joypad Registers**

| Register                      | Address | Name    | Style          | Access     | Timing                               |
|-------------------------------|---------|---------|----------------|------------|--------------------------------------|
| Old Style Joypad<br>Registers | \$4016  | JOYSER0 | single (write) | read/write | any time that is not auto-<br>joypad |
| Old Style Joypad<br>Registers | \$4017  | JOYSER1 | many (read)    | read       | any time that is not auto-<br>joypad |

# **Internal CPU Registers**

| Register                                           | Address | Name     | Style  | Access | Timing                              |
|----------------------------------------------------|---------|----------|--------|--------|-------------------------------------|
| Interrupt Enable Register                          | \$4200  | NMITIMEN | single | write  | any time                            |
| IO Port Write Register                             | \$4201  | WRIO     | single | write  | any time                            |
| Multiplicand Registers                             | \$4202  | WRMPYA   | single | write  | any time                            |
| Multiplicand Registers                             | \$4203  | WRMPYB   | single | write  | any time                            |
| Divisor & amp; Dividend Registers                  | \$4204  | WRDIVL   | single | write  | any time                            |
| Divisor & amp; Dividend Registers                  | \$4205  | WRDIVH   | single | write  | any time                            |
| Divisor & amp; Dividend Registers                  | \$4206  | WRDIVB   | single | write  | any time                            |
| IRQ Timer Registers (Horizontal - Low)             | \$4207  | HTIMEL   | single | write  | any time                            |
| IRQ Timer Registers (Horizontal - High)            | \$4208  | HTIMEH   | single | write  | any time                            |
| IRQ Timer Registers (Vertical - Low)               | \$4209  | VTIMEL   | single | write  | any time                            |
| IRQ Timer Registers (Vertical - High)              | \$420A  | VTIMEH   | single | write  | any time                            |
| DMA Enable Register                                | \$420B  | MDMAEN   | single | write  | any time                            |
| HDMA Enable Register                               | \$420C  | HDMAEN   | single | write  | any time                            |
| ROM Speed Register                                 | \$420D  | MEMSEL   | single | write  | any time                            |
| Interrupt Flag Registers                           | \$4210  | RDNMI    | single | read   | any time                            |
| Interrupt Flag Registers                           | \$4211  | TIMEUP   | single | read   | any time                            |
| PPU Status Register                                | \$4212  | HVBJOY   | single | read   | any time                            |
| IO Port Read Register                              | \$4213  | RDIO     | single | read   | any time                            |
| Multiplication Or Divide Result Registers<br>(Low) | \$4214  | RDDIVL   | single | read   | any time                            |
| Multiplication Or Divide Result Registers (High)   | \$4215  | RDDIVH   | single | read   | any time                            |
| Multiplication Or Divide Result Registers (Low)    | \$4216  | RDMPYL   | single | read   | any time                            |
| Multiplication Or Divide Result Registers (High)   | \$4217  | RDMPYH   | single | read   | any time                            |
| Controller Port Data Registers (Pad 1 -<br>Low)    | \$4218  | JOY1L    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 1 -<br>High)   | \$4219  | JOY1H    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 2 -<br>Low)    | \$421A  | JOY2L    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 2 -<br>High)   | \$421B  | JOY2H    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 3 -<br>Low)    | \$421C  | JOY3L    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 3 -<br>High)   | \$421D  | ЈОҮЗН    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 4 -<br>Low)    | \$421E  | JOY4L    | single | read   | any time that is not<br>auto-joypad |
| Controller Port Data Registers (Pad 4 -<br>High)   | \$421F  | JOY4H    | single | read   | any time that is not<br>auto-joypad |

# **DMA Registers**

| Register                     | Address | Name |
|------------------------------|---------|------|
| DMA Control Register         | \$43×0  | DMAP |
| DMA Destination Register     | \$43×1  | BBAD |
| DMA Source Address Registers | \$43×2  | A1Tx |
| DMA Source Address Registers | \$43×3  | A1Tx |
| DMA Source Address Registers | \$43×4  | A1B  |
| DMA Size Registers (Low)     | \$43×5  | DASx |
| DMA Size Registers (High)    | \$43×6  | DASx |

# **HDMA Registers**

| Register                                      | Address | Name |
|-----------------------------------------------|---------|------|
| HDMA Control Register                         | \$43×0  | DMAP |
| HDMA Destination Register                     | \$43×1  | BBAD |
| HDMA Table Address Registers                  | \$43×2  | A1Tx |
| HDMA Table Address Registers                  | \$43×3  | A1Tx |
| HDMA Table Address Registers                  | \$43×4  | A1B  |
| HDMA Indirect Address Registers               | \$43×5  | DASx |
| HDMA Indirect Address Registers               | \$43×6  | DASx |
| HDMA Indirect Address Registers               | \$43×7  | DASB |
| HDMA Mid Frame Table Address Registers (Low)  | \$43×8  | A2Ax |
| HDMA Mid Frame Table Address Registers (High) | \$43×9  | A2Ax |
| HDMA Line Counter Register                    | \$43xA  | NTLR |

# **Register Details**

Format:

rw?fvha Name bits

"Name" is the official and unofficial name of the register. "bits" is either 8 or 16 characters explicating the bitfields in this register.

The flags are:

```
rw?fvha
|||||+--> '+' if it can be read/written at any time, '-' otherwise
||||+---> '+' if it can be read/written during H-Blank
|||+----> '+' if it can be read/written during V-Blank
||+----> '+' if it can be read/written during force-blank
||+----> Read/Write style: 'b' => byte
|| 'h'/'l' => read/write high/low byte of a word
|| 'w' => word read/write twice low then high
```

**SNES Registers** 

```
Last update:
2019/08/03 03:37 ff3:ff3us:doc:snes:register https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564803456
```

## **Screen Display**

```
$2100 wb++++ INIDISP
xuuubbbb
x = Forced Blanking (0=Normal, 1=Screen Black)
uuu = Unused
bbbb = Master Brightness (0=Screen Black, or N=1..15:
Brightness*(N+1)/16)
```

This register is used for screen fades. In Forced Blank, VRAM, OAM and CGRAM can be freely accessed (otherwise it's accessible only during Vblank). Even when in forced blank, the TV Set keeps receiving Vsync/Hsync signals (thus producing a stable black picture). And, the CPU keeps receiving Hblank/Vblank signals (so any enabled video NMIs, IRQs, HDMAs are kept generated).

Note that force blank CAN be disabled mid-scanline. However, this can result in glitched graphics on that scanline, as the internal rendering buffers will not have been updated during force blank. Current theory is that BGs will be glitched for a few tiles (depending on how far in advance the PPU operates), and OBJ will be glitched for the entire scanline.

Also, writing this register on the first line of V-Blank (225 or 240, depending on overscan) when force blank is currently active causes the OAM Address Reset to occur.

Back to top

## **Object Size and Object Base**

| \$2101 wb | )++?- OBSEL          |            |                                        |  |  |  |  |  |
|-----------|----------------------|------------|----------------------------------------|--|--|--|--|--|
|           | sssnnbbb             |            |                                        |  |  |  |  |  |
|           | sss = OBJ Size S     | Selection  | (0-5, see below) (6-7=Reserved)        |  |  |  |  |  |
|           | Val Small La         | arge       |                                        |  |  |  |  |  |
|           | $000 = 8 \times 8$   | 16x16      | ;Caution:                              |  |  |  |  |  |
|           | $001 = 8 \times 8$   | 32x32      | ;In 224-lines mode, OBJs with 64-pixel |  |  |  |  |  |
| height    |                      |            |                                        |  |  |  |  |  |
|           | $010 = 8 \times 8$   | 64x64      | ;may wrap from lower to upper screen   |  |  |  |  |  |
| border.   |                      |            |                                        |  |  |  |  |  |
|           | $011 = 16 \times 16$ | 32x32      | ;In 239-lines mode, the same problem   |  |  |  |  |  |
| applies   |                      |            |                                        |  |  |  |  |  |
|           | $100 = 16 \times 16$ | 64x64      | ;also for OBJs with 32-pixel height.   |  |  |  |  |  |
|           | $101 = 32 \times 32$ | 64x64      |                                        |  |  |  |  |  |
|           | $110 = 16 \times 32$ | 32x64 (un  | documented)                            |  |  |  |  |  |
|           | $111 = 16 \times 32$ | 32x32 (un  | 2x32 (undocumented)                    |  |  |  |  |  |
|           | (Ie. a settin        | ng of 0 me | ans Small OBJs=8x8, Large OBJs=16x16   |  |  |  |  |  |

This register selects the location in VRAM where the character data is stored, and the size of sprites on the screen. The byte location of the character data can be found by shifting the b (base selection) bits left by 14. Note that this allows only four different locations in VRAM to put the sprite data; the high bit of the base selection should always be zero since only 64K of VRAM can be addressed.

#### Back to top

#### **OAM Address and Priority Rotation**

| \$2102  | wl++?- OAMA | DDL                                                      |
|---------|-------------|----------------------------------------------------------|
| \$2103  | wh++?- OAMA | DDH                                                      |
|         | puuuuuub a  | ааааааа                                                  |
|         | р           | = OAM Priority Rotation (0=OBJ #0, 1=OBJ #N) (OBJ with   |
| highest | priority)   |                                                          |
|         | uuuuuu      | = Unused                                                 |
|         | baaaaaaaa   | = OAM Address (for OAM read/write)                       |
|         | aaaaaa      | = OBJ Number #N (for OBJ Priority) (bit 7-1 are used for |
| two pur | poses)      |                                                          |

This register contains of a 9 bit Reload value and a 10 bit Address register (plus the priority flag). Writing to \$2102 or \$2103 does change the lower 8 bit or upper 1 bit of the Reload value, and does additionally copy the (whole) 9 bit Reload value to the 10 bit Address register (with address Bit 0=0 so next access will be an even address). When OAM Priority Rotation bit is set, an Obj other than Sprite 0 may be given priority.

OAM address can be thought of in two ways, depending on your conception of OAM. If you consider OAM as a 544-byte table, baaaaaaaa is the word address into that table. If you consider OAM to be a 512-byte table and a 32-byte table, b is the table selector and aaaaaaaa is the word address in the table.

During rendering, the PPU is destroying the Address register (using it internally for whatever purposes), after rendering (at begin of Vblank, ie. at begin of line 225/240, but only if not in Forced Blank mode) it reinitializes the Address from the Reload value; the same reload occurs also when deactivating forced blank anytime during the first scanline of vblank (ie. during line 225/240). This is known as 'OAM reset'. 'OAM reset' also occurs on certain writes to \$2100.

Writing to either \$2102 or \$2103 resets the entire internal OAM Address to the values last written to this register. E.g., if you set \$0104 to this register, write 4 bytes, then write \$01 to \$2103, the internal OAM address will point to word 4, not word 6.

## **OAM Data Write**

| \$2104                                                 | wb++ OAMDATA                                             |  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
|                                                        | ddddddd = byte to write to VRAM                          |  |  |  |  |  |  |
| Writes to EVEN and ODD byte-addresses work as follows: |                                                          |  |  |  |  |  |  |
|                                                        | Write to EVEN address> set OAM_Lsb = Data ;memorize      |  |  |  |  |  |  |
| value                                                  |                                                          |  |  |  |  |  |  |
|                                                        | Write to ODD address<200h> set WORD[addr-1] = Data*256 + |  |  |  |  |  |  |
| OAM_Ls                                                 | b                                                        |  |  |  |  |  |  |
|                                                        | Write to ANY address>1FFh> set BYTE[addr] = Data         |  |  |  |  |  |  |

This register writes a byte to OAM. After the byte is stored, the OAM address is incremented so that the next write or read will be to the following address. Note that OAM writes are done in an odd manner, in particular the low table of OAM is not affected until the high byte of a word is written (however, the high table is affected immediately). Thus, if you set the address, then alternate writes and reads, OAM will never be affected until you reach the high table!

Similarly, if you set the address to 0, then write 1, 2, read, then write 3, OAM will end up as "01 02 01 03", rather than "01 02 xx 03" as you might expect.

Technically, this register CAN be written during H-blank (and probably mid-scanline as well). However, due to OAM address invalidation the actual OAM byte written will probably not be what you expect. Note that writing during force-blank will only work as expected if that force-blank was begun during V-Blank, or (probably) if \$2102-\$2103 have been reset during that force-blank period. OAM Size is \$0220 bytes (addresses \$0220..\$03FF are mirrors of \$0200..\$021F)

Back to top

#### **BG Mode and BG Character Size**

| \$2105 wb | ++++  | - BGM | ODE   |       |       |       |          |          |              |              |
|-----------|-------|-------|-------|-------|-------|-------|----------|----------|--------------|--------------|
|           | DCB/  | Aemmm |       |       |       |       |          |          |              |              |
|           | D     | = BG  | tile  | size  | e for | BG4   | (0=8x8,  | 1=16x16  | 6) (BgMode0. | .4: variable |
| 8x8 or 1  | .6x16 | 5)    |       |       |       |       |          |          |              |              |
|           | С     | = BG  | tile  | size  | e for | BG3   | (0=8x8,  | 1=16x16  | 6) (BgMode5: | 8x8 acts as  |
| 16x8)     |       |       |       |       |       |       |          |          |              |              |
|           | В     | = BG  | tile  | size  | e for | BG2   | (0=8x8,  | 1=16x16  | 6) (BgMode6: | fixed 16x8?) |
|           | Α     | = BG  | tile  | size  | e for | BG1   | (0=8x8,  | 1=16x16  | 6) (BgMode7: | fixed 8x8)   |
|           | е     | = Mo  | de 1  | BG3 p | rior  | ity H | bit (0=N | ormal, 1 | _=High)      |              |
|           | mmm   | = BG  | Mode  | (0    | 7, s  | ee be | elow)    |          |              |              |
|           |       | Mode  |       | BG de | pth   | 0PT   | Priori   | ties     |              |              |
|           |       |       |       | 123   | 3 4   |       | Front    | -> Back  | Туре         |              |
|           |       | -=    |       | =-=-= | :-=   | = - · | ======   | =====    |              |              |
| ======    | ====  | ===== | ===== |       | :===- |       |          |          |              |              |
|           |       | 0     |       | 222   | 2     | n     | 3AB2a    | b1CD0cd  | Normal       |              |
|           |       | 1     |       | 4 4 2 | 2     | n     | 3AB2a    | b1C 0c   | Normal       |              |
|           |       |       |       | *     | if e  | set   | : C3AB2  | abl Oc   | Normal       |              |
|           |       | 2     |       | 44    |       | У     | 3A 2B    | 1a 0b    | Offset-per-  | tile         |

| 2024/05/19 10:32 |          |             |       |      | 9/18 |      |      | SNES Registers            |
|------------------|----------|-------------|-------|------|------|------|------|---------------------------|
|                  | 2        | 0 /         | n     | 24   | םכ   | 1-   | Qh   | Normal                    |
|                  | 2        | 04          | П     | SA   | ZD   | та   | 00   | NOTINAL                   |
|                  | 4        | 82          | У     | ЗA   | 2B   | 1a   | 0b   | Offset-per-tile           |
|                  | 5        | 4 2         | n     | ЗA   | 2B   | 1a   | 0b   | 512-pix-hires             |
|                  | 6        | 4           | У     | ЗA   | 2    | 1a   | 0    | 512-pix- plus Offset-per- |
| tile             |          |             |       |      |      |      |      |                           |
|                  | 7        | 8           | n     | 3    | 2    | 1a   | 0    | Rotation /Scaling         |
|                  | 7+EXTBG  | 87          | n     | 3    | 2B   | 1a   | 0b   | Rotation /Scaling         |
|                  | Mode 5/6 | don't supp  | ort s | cree | en a | add: | itio | n/subtraction.            |
|                  | CG Direc | t Select is | supp  | ort  | on   | BG   | l of | Mode 3/4, and on BG1/BG2? |
| of Mode 7.       |          |             |       |      |      |      |      |                           |

This register determines the size of tile represented by one entry in the tile map array, the order that BGs are drawn on the screen, and the screen mode. If the BG tile size for BG1/BG2/BG3/BG4 bit is set, then the BG is made of  $16 \times 16$  tiles. Otherwise,  $8 \times 8$  tiles are used. However, note that Modes 5 and 6 always use 16-pixel wide tiles, and Mode 7 always uses  $8 \times 8$  tiles. "OPT" means "Offset-per-tile mode". For the priorities, numbers mean sprites with that priority. Letters correspond to BGs (A=1, B=2, etc), with upper/lower case indicating tile priority 1/0. The priority bit only works in Mode 1. In all other modes, it is ignored (drawing is performed as if this bit were clear.)

Notice that Mode 7 has only one BG. All games which appear to have a Mode 7 screen but more than one BG either use sprites to simulate a BG, or switch video modes midframe via HDMA. Mode 7's EXTBG mode allows you to enable BG2, which uses the same tilemap and character data as BG1 but interprets bit 7 of the pixel data as a priority bit.

#### Back to top

### **Mosaic Size and Mosaic Enable**

| \$2106 wb+++ | - MOSAIC            |                  |                    |
|--------------|---------------------|------------------|--------------------|
| XXX          | xDCBA               |                  |                    |
| XXX          | x = Mosaic Size     | (0=Smallest/1x1, | 0Fh=Largest/16x16) |
| D            | = BG4 Mosaic Enable | (0=0ff, 1=0n)    |                    |
| С            | = BG3 Mosaic Enable | (0=0ff, 1=0n)    |                    |
| В            | = BG2 Mosaic Enable | (0=0ff, 1=0n)    |                    |
| А            | = BG1 Mosaic Enable | (0=0ff, 1=0n)    |                    |

Allows to divide the BG layer into NxN pixel blocks, in each block, the hardware picks the upper-left pixel of each block, and fills the whole block by the color - thus effectively reducing the screen resolution.

Horizontally, the first block is always located on the left edge of the TV screen. Vertically, the first block is located on the top of the TV screen. When changing the mosaic size mid-frame, the hardware does first finish current block (using the old vertical size) before applying the new vertical size. Technically, vertical mosaic is implemented as so: subtract the veritical index (within the current block) from the vertical scroll register (BGnVOFS).

It seems that writing the same value to this register does not reset the 'starting scanline'. Note that mosaic is applied after scrolling, but before any clip windows, color windows, or math. So the XxX block can be partially clipped, and it can be mathed as normal with a non-mosaiced BG. But scrolling can't make it partially one color and partially another.

Modes 5-6 should 'double' the expansion factor to expand half-pixels. This actually makes xxxx=0 have a visible effect, since the even half-pixels (usually on the subscreen) hide the odd half-pixels. The same thing happens vertically with interlace mode.

Mode 7, of course, is weird. BG1 mosaics about like normal, as long as you remember that the Mode 7 transformations have no effect on the XxX blocks. BG2 uses bit A to control 'vertical mosaic' and bit B to control 'horizontal mosaic', so you could be expanding over 1xX, Xx1, or XxX blocks. This can get really interesting as BG1 still uses bit A as normal, so you could have the BG1 pixels expanded XxX with high-priority BG2 pixels expanded 1xX on top of them.

#### Back to top

#### **BG Screen Base and Screen Size**

| \$2107 | wb++?-  | BG1SC      |       |       |       |        |      |          |        |     |         |
|--------|---------|------------|-------|-------|-------|--------|------|----------|--------|-----|---------|
| \$2108 | wb++?-  | BG2SC      |       |       |       |        |      |          |        |     |         |
| \$2109 | wb++?-  | BG3SC      |       |       |       |        |      |          |        |     |         |
| \$210A | wb++?-  | BG4SC      |       |       |       |        |      |          |        |     |         |
|        | aaaaaa  | abb        |       |       |       |        |      |          |        |     |         |
|        | aaaaaa  | a = Screen | Base  | Addre | ss in | n VRAM | (in  | 1K-word  | steps, | aka | 2K-byte |
| steps) | (Addr>> | >10)       |       |       |       |        |      |          |        |     |         |
|        | bb      | = Screen   | Size: | 00=3  | 2x32  | tiles  | (0ne | e-Screen | )      |     |         |
|        |         |            |       | 01=6  | 4x32  | tiles  | (V-№ | lirror)  |        |     |         |
|        |         |            |       | 10=3  | 2x64  | tiles  | (H-M | lirror)  |        |     |         |
|        |         |            |       | 11=6  | 4x64  | tiles  | (Γοι | ır-Scree | n)     |     |         |
|        |         |            |       | (00:  | SCO S | 5C0    | 01:5 | 5C0 SC1  | 10:SC0 | SC0 | 11:SC0  |
| SC1)   |         |            |       |       |       |        |      |          |        |     |         |
|        |         |            |       | (     | SCO S | 5C0    | S    | 5C0 SC1  | SC1    | SC1 | SC2     |
| SC3)   |         |            |       |       |       |        |      |          |        |     |         |
|        |         |            |       |       |       |        |      |          |        |     |         |

Specifies the BG Map addresses in VRAM. The "SCn" screens consists of 32×32 tiles each. Ignored in Mode 7 (Base is always zero, size is always 128×128 tiles).

To calculate the byte location where the tile map starts, shift the a (address) bits left by 11 (multiply by 2048.) The SC size is the dimensions of the tile map; if using  $8 \times 8$  tile mode, this allows BG dimensions of 256 or 512 pixels; if in  $16 \times 16$  mode, the dimensions can be 512 or 1024 pixels. Note that, since there is only 64K of VRAM, the most significant bit must be zero.

When using a screen size wider than 32 tiles, the format is a little different than you might expect. When the width is 64 tiles, then rather than each line in the tile map extending to 128 bytes (instead of 64), there will actually be two tile maps, stored one right after the other in memory. The first tile map will contain the left 32 tiles (x coordinates 0 to 255, when using  $8 \times 8$  tiles), and the next tile map will contain the right 32 tiles (x coordinates 256 to 511, when using  $8 \times 8$  tiles. Setting the scroll register to 512, then, will be the same at setting it to zero.)

A note about using  $16 \times 16$  tiles: These are stored in exactly the same way as  $16 \times 16$  sprites; that is, the first and second rows have 14 ignored tiles between them.

#### **BG** Character Data Area Designation

| \$210B | WD++?- BGI2M | NBA    |      |         |     |         |        |
|--------|--------------|--------|------|---------|-----|---------|--------|
| \$210C | wb++?- BG34N | NBA    |      |         |     |         |        |
|        | ddddcccc bl  | obbaaa | aa   |         |     |         |        |
|        | dddd = BG4   | Tile   | Base | Address | (in | 4K-word | steps) |
|        | cccc = BG3   | Tile   | Base | Address | (in | 4K-word | steps) |
|        | bbbb = BG2   | Tile   | Base | Address | (in | 4K-word | steps) |
|        | aaaa = BG1   | Tile   | Base | Address | (in | 4K-word | steps) |

This register selects the location in VRAM where the tile map starts. The byte address is calculated by shifting the four bits left by 13 (multiplying by 8192). Simply spoken: Saving "\$63" into \$210B makes the PPU look for the Tileset for BG2 at \$6000 in the VRAM and for BG1 at \$3000. Note that, since there is only 64K of VRAM, the highest of the four bits must be set to 0. Ignored in Mode 7 (Base is always zero).

#### **BG1 and Mode 7 Scroll**

| \$210D | ww+++- BG1H0FS                                                            |
|--------|---------------------------------------------------------------------------|
|        | ww+++- M7H0FS                                                             |
| \$210E | ww+++- BG1V0FS                                                            |
|        | ww+++- M7V0FS                                                             |
|        | XX XXXXXXXX                                                               |
|        | mmmmm mmmmmmm                                                             |
|        | xxxxxxxxx = The BG offset, 10 bits                                        |
|        | <pre>mmmmmmmmmmmmm = The Mode 7 BG offset, 13 bits two's-complement</pre> |
| signed |                                                                           |

These are actually two registers in one (or would that be "4 registers in 2"?). Anyway, writing \$210D will write both BG1HOFS which works exactly like the rest of the BGnxOFS registers below (\$210F-\$2114), and M7HOFS which works with the M7\* registers (\$211B-\$2120) instead.

Modes 0-6 use BG1xOFS and ignore M7xOFS, while Mode 7 uses M7xOFS and ignores BG1HOFS. See the appropriate sections below for details, and note the different formulas for BG1HOFS versus M7HOFS.

Back to top

#### BG2, BG3 and BG4 Scroll

| , |
|---|
| 5 |
| 5 |
| 5 |
| 5 |
| 5 |
|   |

```
uuuuuxx xxxxxxxx
uuuuu = unused
xxxxxxxxx = The BG offset, 10 bits
```

Note that these are "write twice" registers, first the low byte is written then the high. Current theory is that writes to the register work like this:

```
BGnHOFS = (Current<<8) | (Prev&~7) | ((Reg>>8)&7);
Prev = Current;
or
BGnVOFS = (Current<<8) | Prev;
Prev = Current;
```

Note that there is only one Prev shared by all the BGnxOFS registers. This is NOT shared with the M7\* registers (not even M7xOFS and BG1xOFS).

Also, note that all BGs wrap if you try to go past their edges (if a pixel value is placed in this register that is larger than the width of the BG, a modulus can be performed to determine what the actual pixel will be that is displayed. For example, if the BG1 horizontal pixel value is set to 257, but the width of the BG is 256 pixels, the result will be the same as if it was set to 1). Thus, the maximum offset value in BG Modes 0-6 is 1023, since you have at most 64 tiles (if x/y of BGnSC is set) of 16 pixels each (if the appropriate bit of BGMODE is set).

Horizontal scrolling scrolls in units of full pixels no matter if we're rendering a 256-pixel wide screen or a 512-half-pixel wide screen. However, vertical scrolling will move in half-line increments if interlace mode is active.

Back to top

## Video Port Control

```
$2115 wb++?- VMAIN
        iuuuttrr
            = Address increment mode:
        i i
                 0 => increment after writing to $2118/reading from $2139
                 1 => increment after writing to $2119/reading from $213A
        uuu = unused
        tt = Address translation
                 00 = No translation
                 01 = 8bit rotate
                 10 = 9bit rotate
                 11 = 10 bit rotate
        rr = Address increment amount
                 00 = Normal increment by 1
                 01 = Increment by 32
                 10 = Increment by 128
                 11 = Increment by 128
```

This register controls the way data is uploaded to VRAM. The bits in here are a bit weird, but can be

| 2024/05/19 | 10:32 |
|------------|-------|
| 2024/03/13 | 10.52 |

useful. When you want to change only the high byte of a series of VRAM locations (register 2116 \* 2 + 1), you should set i to 1. When you want to change just the low byte, set i to 0. When you want to write a whole word, you should set i to 0; otherwise, if i=1, writing a word will cause the high byte of the first location to be changed, followed by the low byte of the next location.

The address translation (tt) is intended for bitmap graphics (where one would have filled the BG Map by increasing Tile numbers), technically it does thrice left-rotate the lower 8, 9, or 10 bits of the Wordaddress. As an example if \$2116-\$2117 are set to #\$0003, then word address #\$0018 will be written instead, and \$2116-\$2117 will be incremented to \$0004:

| Translation  | Bitmap Type              | Port [2116h/17h] | VRAM Word-Address  |
|--------------|--------------------------|------------------|--------------------|
| 8bit rotate  | 4-color; 1 word/plane    | aaaaaaaaYYYxxxxx | > aaaaaaaaxxxxXYYY |
| 9bit rotate  | 16-color; 2 words/plane  | aaaaaaaYYYxxxxxP | > aaaaaaaxxxxxPYYY |
| 10bit rotate | 256-color; 4 words/plane | aaaaaaYYYxxxxxPP | > aaaaaaxxxxxPPYYY |

Where "aaaaa" would be the normal address MSBs, "YYY" is the Y-index (within a 8×8 tile), "xxxxx" selects one of the 32 tiles per line, "PP" is the bit-plane index (for BGs with more than one Word per plane). For the intended result (writing rows of 256 pixels) the Translation should be combined with Increment Step=1.

For Mode 7 bitmaps one could eventually combine step 32/128 with 8bit/10bit rotate:

```
8bit-rotate/step32 aaaaaaaaXXXxxYYY --> aaaaaaaaaxxYYYXXX
10bit-rotate/step128 aaaaaaXXXxxxYYY --> aaaaaaxxxYYYXXX
```

Though the SNES can't access enought VRAM for fullscreen Mode 7 bitmaps. Step 32 (without translation) is useful for updating BG Map columns (eg. after horizontal scrolling).

#### Back to top

#### **VRAM Address**

\$2116 wl++?- VMADDL \$2117 wh++?- VMADDH aaaaaaaa aaaaaaaa = Word address for accessing VRAM

VRAM Address for reading/writing. This is a WORD address (2-byte steps), the PPU could theoretically address up to 64K-words (128K-bytes), in practice, only 32K-words (64K-bytes) are installed in SNES consoles (VRAM address bit15 is not connected, so addresses 8000h-FFFFh are mirrors of 0-7FFFh).

When reading from VRAM, a "dummy read" must be performed after writing to this register; the first value read is supposed to be meaningless. No "dummy write" is required, however.

After reading/writing VRAM Data, the Word-address can be automatically incremented by 1,32,128 (depending on the Increment Mode in Register \$2115) (Note: the Address Translation feature is applied only "temporarily" upon memory accesses, it doesn't affect the value in Register \$2116-\$2117). Writing to \$2116-\$2117 does prefetch 16bit data from the new address (for later reading).

## VRAM Data Write

This writes data to VRAM. The writes take effect immediately, even if no increment is performed. The address is incremented when one of the two bytes is written; which one depends on the setting of bit 7 of register \$2115. Depending on the Increment Mode the address does (or doesn't) get automatically incremented after the write. Keep in mind the address translation bits of \$2115 as well. The interaction between these registers and \$2139-\$213A is unknown.

Back to top

## Mode 7 Settings

Back to top

### Mode 7 Matrix A, B , C and D

\$211B ww+++- M7A (and Maths 16bit operand) \$211C ww+++- M7B (and Maths 8bit operand) \$211D ww+++- M7C \$211E ww+++- M7D aaaaaaaa aaaaaaaa = Signed 16bit values in 1/256 pixel units (1bit sign, 7bit integer, 8bit fraction)

Note that these are "write twice" registers, first the low byte is written then the high. Current theory is that writes to the register work like this:

```
Reg = (Current<<8) | Prev;
Prev = Current;
```

Note that there is only one Prev shared by all these registers. This Prev is NOT shared with the

BGnxOFS registers, but it IS shared with the M7xOFS registers. These set the matrix parameters for Mode 7. The values are an 8-bit fixed point, i.e. the value should be divided by 256.0 when used in calculations. See below for more explanation.

The product A\*(B»8) may be read from registers \$2134-\$2136. There is supposedly no important delay. It may not be operative during Mode 7 rendering.

Back to top

#### Mode 7 Center X and Y

Note that these are "write twice" registers, like the other M7\* registers. See above for the write semantics. The value is 13 bit two's-complement signed. The matrix transformation formula is:

| [ | Х | ] |   | [ | А | В | ] |   | [ | SX | + | M7H0FS | - | СХ | ] |   | [ | СХ | ] |
|---|---|---|---|---|---|---|---|---|---|----|---|--------|---|----|---|---|---|----|---|
| [ |   | ] | = | [ |   |   | ] | * | [ |    |   |        |   |    | ] | + | [ |    | ] |
| [ | Υ | ] |   | Ι | С | D | ] |   | [ | SY | + | M7V0FS | - | CY | ] |   | [ | CY | ] |

Note: SX/SY are screen coordinates. X/Y are coordinates in the playing field from which the pixel is taken. If \$211A bit 7 is clear, the result is then restricted to  $0 \leftarrow X \leftarrow 1023$  and  $0 \leftarrow Y \leftarrow 1023$ . If \$211A bits 6 and 7 are both set and X or Y is less than 0 or greater than 1023, use the low 3 bits of each to choose the pixel from character 0. The bit-accurate formula seems to be something along the lines of:

```
#define CLIP(a) (((a)&0x2000)?((a) |~0x3ff):((a)&0x3ff))
X[0,y] = ((A*CLIP(HOFS-CX))&~63)
+ ((B*y)&~63) + ((B*CLIP(VOFS-CY))&~63)
+ (CX<<8)
Y[0,y] = ((C*CLIP(HOFS-CX))&~63)
+ ((D*y)&~63) + ((D*CLIP(VOFS-CY))&~63)
+ (CY<<8)
X[x,y] = X[x-1,y] + A
Y[x,y] = Y[x-1,y] + C</pre>
```

(In all cases, X[] and Y[] are fixed point with 8 bits of fraction)

#### **CGRAM Address**

\$2121 wb+++- CGADD aaaaaaaaa = CGRAM word address

This sets the word address (byte address \* 2, i.e. color) to begin uploading (or downloading) data to CGRAM, which will be affected by \$2122 and \$213B.

Writing "0" to \$2121 will change the "currently selected color index" used by \$2122, to 0. Upon writing a color to \$2122, the color will be stored into the array index selected by \$2121, which in this case would be 0 - if you wrote 0 to \$2121 before writing a color to \$2122.

Keep in mind the color index accessed by \$2121 will automatically increment by 1 after writing a color to \$2122. This is an effect generated by \$2122 after being used in case you want to write specific colors in a series.

Back to top

## **CGRAM Data Write**

| \$2122 | ww+++- CGDATA                                          |
|--------|--------------------------------------------------------|
|        | bbbbbbbb = byte to write to CGRAM                      |
|        | Writes to EVEN and ODD byte-addresses work as follows: |
|        | Write to EVEN address> set Cgram_Lsb = Data ;memorize  |
| value  |                                                        |
|        | Write to ODD address > set WORD[addr-1] = Data*256 +   |
| Cgram_ | Lsb                                                    |

This register writes a byte to CGRAM. After the byte is stored, the CGRAM address is incremented so that the next write or read will be to the following byte. Accesses to CGRAM are handled just like accesses to the low table of OAM, see \$2104 for details. Note that the color values are stored in BGR order (-bbbbbgg gggrrrrr).

Back to top

#### Window Mask Settings

```
$2123 wb+++- W12SEL - Window Mask Settings for BG1 and BG2
$2124 wb+++- W34SEL - Window Mask Settings for BG3 and BG4
$2125 wb+++- W0BJSEL - Window Mask Settings for OBJ and Color Window
aabbccdd
2123h 2124h 2125h
aa = BG2 BG4 MATH Window-2 Area (0..1=Disable, 1=Inside,
2=Outside)
bb = BG2 BG4 MATH Window-1 Area (0..1=Disable, 1=Inside,
2=Outside)
```

| 2024/05/19 10:32 |     |     | 17/18                      | SNES Registers |
|------------------|-----|-----|----------------------------|----------------|
| cc = BG1         | BG3 | 0B1 | Window-2 Area (0 1=Disable | 1=Inside       |
| 2=Outside)       | 203 | 025 |                            | 1 1115100,     |
| dd = BG1         | BG3 | 0BJ | Window-1 Area (01=Disable, | l=Inside,      |
| 2=Outside)       |     |     |                            |                |

Allows to select if the window area is inside or outside the X1,X2 coordinates, or to disable the area. In other words, these registers determine which Windows to apply to which BGs, sprite (OBJ) or color window (MATH), and whether clipping should be performed inside or outside the window. To enable windowing, the appropriate bits in registers \$212E and \$212F must be set in addition to the bits in these registers.

Back to top

## **Window Position**

```
$2126 wb+++- WH0 - Window 1 Left Position
$2127 wb+++- WH1 - Window 1 Right Position
$2128 wb+++- WH2 - Window 2 Left Position
$2129 wb+++- WH3 - Window 2 Right Position
xxxxxxx = Window Position ($00..$FF; 0=leftmost, 255=rightmost)
```

Specifies the horizontal boundaries of the windows. Note that there are no vertical boundaries (these could be implemented by manipulating the window registers via IRQ and/or HDMA). The "inside-window" region extends from X1 to X2 (that, including the X1 and X2 coordinates), so the window width is X2-X1+1. If the width is zero (or negative), then the "inside-window" becomes empty, and the whole screen will be treated "outside-window".

Back to top

### Window Mask Logic

| \$212A | wb+++ | - WBGLOG - Window mask logic for BGs                      |
|--------|-------|-----------------------------------------------------------|
|        | 44332 | 2211                                                      |
| \$212B | wb+++ | - WOBJLOG - Window mask logic for OBJs and Color Window   |
|        | uuuur | nmoo                                                      |
|        | 44    | = BG4 Window 1/2 Mask Logic (0=OR, 1=AND, 2=XOR, 3=XNOR)  |
|        | 33    | = BG3 Window 1/2 Mask Logic (0=OR, 1=AND, 2=XOR, 3=XNOR)  |
|        | 22    | = BG2 Window 1/2 Mask Logic (0=OR, 1=AND, 2=XOR, 3=XNOR)  |
|        | 11    | = BG1 Window 1/2 Mask Logic (0=OR, 1=AND, 2=XOR, 3=XNOR)  |
|        | uuuu  | = unused                                                  |
|        | mm    | = MATH Window 1/2 Mask Logic (0=0R, 1=AND, 2=XOR, 3=XNOR) |
|        | 00    | = OBJ Window 1/2 Mask Logic (0=OR, 1=AND, 2=XOR, 3=XNOR)  |

Consider two variables, W1 and W2, which are true for pixels between the appropriate left and right bounds as set in \$2126-\$2129 and false otherwise. Allows to merge the W1 and W2 areas into a single "final" window area (which is then used by \$212E, \$212F or \$2130). The OR/AND/XOR/XNOR logic is applied ONLY if BOTH W1 and W2 are enabled (in \$2123-\$2125 registers). If only one window

is enabled, then that window is used as is as "final" area. If both are disabled, then the "final" area will be empty (nothing masked). Note: "XNOR" means "1 XOR area1 XOR area2" (ie. the inverse of the normal XOR result).

Back to top

### **Screen Destination**

```
$212C wb+++- TM - Main Screen Designation
$212D wb+++- TS - Subscreen Designation
uuuo4321
uuu = unused
o = OBJ (0=Disable, 1=Enable)
4 = BG4 (0=Disable, 1=Enable)
3 = BG3 (0=Disable, 1=Enable)
2 = BG2 (0=Disable, 1=Enable)
1 = BG1 (0=Disable, 1=Enable)
```

Allows to enable/disable video layers. The Main screen is the "normal" display. The Sub screen is used only for Color Math and for 512-pixel Hires Mode.

Back to top

### Window Area Screen Disable

```
$212E
       wb+++- TMW - Window Area Main Screen Disable
$212F
      wb+++- TSW - Window Area Subscreen Disable
        uuuo4321
        uuu = unused
           = OBJ (0=Enable, 1=Disable)
        0
            = BG4 (0=Enable, 1=Disable)
        4
           = BG4 (0=Enable, 1=Disable)
        3
            = BG4 (0=Enable, 1=Disable)
        2
            = BG4 (0=Enable, 1=Disable)
        1
```

Allows to disable video layers within the window region. "Disable" forcefully disables the layer within the window area (otherwise it is enabled or disabled as selected in the master enable bits in register \$212C-\$212D).

