2024/05/19 06:59 1/17 SNES Registers

SNES Registers

This page is based on the great work of Anomie, Qwertie and Martin Korth. If this document helps you
and you feel like giving back, consider a donation to the Nocash Project, because a lot of info from
this page has been taken from there.

Address Bus B Registers

Register Address Name Style|Access Timing
Screen Display $2100 INIDISP single| write any time
Object Size and Object $2101 OBSEL single| write f-blank, v-blank
OAM Address and Priority $2102 OAMADDL |single| write | f-blank, v-blank
Rotation (Low)
OAM Address and Priority , .
Rotation (High) $2103 OAMADDH single| write f-blank, v-blank
OAM Data Write $2104 OAMDATA single| write f-blank, v-blank
BG Mode and BG Character Size| $2105 BGMODE single| write f-bIankBI\;-:ILank, h-
Mosaic Size and Mosaic Enable | $2106 MOSAIC single| write f-blankt,bl\;?II(ank, h-
Egé Screen Base and Screen | 547 BG1SC single| write | f-blank, v-blank
Egz Screen Base and Screen | 5 4g BG2SC single| write | f-blank, v-blank
oo3 screen Base and Screen | 4109 BG3SC single| write | f-blank, v-blank
Sgg Screen Base and Screen $210A BG3SC single| write f-blank, v-blank
BG Character Data Area . .
Designation (BG1 & BG2) $210B BG12NBA single| write f-blank, v-blank
BG Character Data Area . .
Designation (BG3 & BGA4) $210C BG34NBA single| write f-blank, v-blank
BG1 and Mode 7 Horizontal $210D BG1HOFS and dual | write f-blank, v-blank, h-
Scroll M7HOFS blank

. BG1VOFS and . f-blank, v-blank, h-
BG1 and Mode 7 Vertical Scroll | $210E M7VOFS dual | write blank
BG2 Horizontal Scroll $210F BG2HOFS dual | write f'b'a”kk')é'r?l'(a”k' h-
BG2 Vertical Scroll $2110 BG2VOFS dual | write f-blankk,)l\;-rt])II(ank, h-
BG3 Horizontal Scroll $2111 BG3HOFS dual | write f-blankk,)l\zl;r?II(ank, h-
BG3 Vertical Scroll $2112 BG3VOFS dual | write f'b'a”ké)l‘(’,j]'fl'(a”k' h-
BG4 Horizontal Scroll $2113 BGA4HOFS dual | write f'b'a”ké)l‘;'rf’l'(a”k' h-

ffehacking.com wiki - https://www.fféhacking.com/wiki/

https://wiki.superfamicom.org/registers
https://media.smwcentral.net/Ersanio/SMWCstuff/Advanced%20documentation/qsnesdoc.html
https://problemkaputt.de/fullsnes.htm
https://problemkaputt.de/donate.htm

Last update:
2019/08/02 04:42

ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

Register Address Name Style|Access Timing

BG4 Vertical Scroll $2114 BGAVOFS dual | write | PNk v-olank b
Video Port Control $2115 VMAIN single| write f-blank, v-blank
VRAM Address (Low) $2116 VMADDL single| write f-blank, v-blank
VRAM Address (High) $2117 VMADDH single| write f-blank, v-blank
VRAM Data Write (Low) $2118 VMDATAL single| write f-blank, v-blank
VRAM Data Write (High) $2119 VMDATAH single| write f-blank, v-blank
Mode 7 Settings $211A M7SEL single| write f-blank, v-blank
Mode 7 Matrix A $211B M7A dual | write | PNk v-olank b
Mode 7 Matrix B $211C M7B dual | write | 01N v-Dank b
Mode 7 Matrix C $211D M7C dual | write f'b'a”ki)é':lia”k' h-
Mode 7 Matrix D $211F M7D dual | write | PNk volank b
Mode 7 Center X $211F M7X dual | write | PNk v-olank b
Mode 7 Center Y $2120 M7Y dual | write f-blankk,)l\grt])II(ank, h-
CGRAM Address $2121 CGADD single| write f'blankbé'r?liank' h-
CGRAM Data Write $2122 CGDATA dual | write f'b'a”kbé':ﬂ(a”k' h-
Window Mask Settings (BG1 & , . f-blank, v-blank, h-
BG2) $2123 W12SEL single| write blank
Window Mask Settings (BG3 & , . f-blank, v-blank, h-
BG4) $2124 W34SEL single| write blank
Window Mask Settings (OBJ and , . f-blank, v-blank, h-
MATH) $2125 WOBJSEL single| write blank
Window 1 Left Position $2126 WHO single| write f-blankt,)l\;-r?ll(ank, h-
Window 1 Right Position $2127 WH1 single| write f-blankl,al\g:II(ank, h-
Window 2 Left Position $2128 WH2 single| write f-blanké)l\zl;rl])ll(ank, h-
Window 2 Right Position $2129 WH3 single| write f-blanké)l\z/i-r?II(ank, h-
Window Mask Logic registers , . f-blank, v-blank, h-
(BG) $212A WBGLOG single| write blank
Window Mask Logic registers , . f-blank, v-blank, h-
(0B)) $212B WOBJLOG single| write blank
Screen Destination Registers $212C ™ single| write f—blanké)l\;—r:)II(ank, h-
Screen Destination Registers $212D TS single| write f-blanké)l\;-rt])ll(ank, h-
Wmdow Mask Destination $212E TMW single| write f-blank, v-blank, h-
Registers blank

https://www.fféhacking.com/wiki/

Printed on 2024/05/19 06:59

2024/05/19 06:59

3/17

SNES Registers

Register Address Name Style|Access Timing
Wmdow Mask Destination $212F TSW single| write f-blank, v-blank, h-
Registers blank
Color Math Registers $2130 CGWSEL single| write f-blankl,al\g:II(ank, h-
Color Math Registers $2131 CGADSUB single| write f-blanké)l\zl;rl])ll(ank, h-
Color Math Registers $2132 COLDATA single| write f-blanké)l\;-:II(ank, h-
Screen Mode Select Register $2133 SETINI single| write f-blankk,)l\;-r:)liank, h-
Multiplication Result Registers | $2134 MPYL single| read f-blankt,al\zl;ral(ank, h-
Multiplication Result Registers | $2135 MPYM single| read f—blanké)l\;—rl])II(ank, h-
Multiplication Result Registers | $2136 MPYH single| read f-blankt,jl\;-rt])ll(ank, h-
Software Latch Register $2137 SLHV single any time
OAM Data Read Register $2138 OAMDATAREAD dual | read f-blank, v-blank
VRAM Data Read Register (Low) | $2139 VMDATALREAD |single| read f-blank, v-blank
mgm Data Read Register $213A | VMDATAHREAD |single| read | f-blank, v-blank
CGRAM Data Read Register $213B CGDATAREAD dual | read f-blank, v-blank
Scan}me Location Registers $213C OPHCT dual | read any time
(Horizontal)
Scanline Location Registers .

. $213D OPVCT dual | read any time
(Vertical)
PPU Status Register $213E STAT77 single| read any time
PPU Status Register $213F STAT78 single| read any time
APU 10 Registers $2140 APUIOO0 single| both any time
APU IO Registers $2141 APUIO1 single| both any time
APU IO Registers $2142 APUIO2 single| both any time
APU 10 Registers $2143 APUIO3 single| both any time
WRAM Data Register $2180 WMDATA single| both any time
WRAM Address Registers $2181 WMADDL single| write any time
WRAM Address Registers $2182 WMADDM single| write any time
WRAM Address Registers $2183 WMADDH single| write any time
Old Style Joypad Registers
Register Address| Name Style Access Timing
Old Style Joypad $4016 |JOYSERO| single (write) |readwrite| 2"Y time that is not auto-
Registers joypad
Old Style Joypad $4017 |JOYSER1| many (read) read any time jchat is not auto-
Registers joypad

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:
2019/08/02 04:42

ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

Internal CPU Registers

Register Address| Name |Style Access Timing
Interrupt Enable Register $4200 [NMITIMEN single| write any time

IO Port Write Register $4201 WRIO [single| write any time
Multiplicand Registers $4202 | WRMPYA |single| write any time
Multiplicand Registers $4203 | WRMPYB |single| write any time
Divisor & Dividend Registers $4204 | WRDIVL |single| write any time
Divisor & Dividend Registers $4205 | WRDIVH |single| write any time
Divisor & Dividend Registers $4206 | WRDIVB |single| write any time

IRQ Timer Registers (Horizontal - Low) $4207 | HTIMEL |single| write any time

IRQ Timer Registers (Horizontal - High) $4208 | HTIMEH |single| write any time

IRQ Timer Registers (Vertical - Low) $4209 | VTIMEL |single| write any time

IRQ Timer Registers (Vertical - High) $420A | VTIMEH |single| write any time

DMA Enable Register $420B | MDMAEN [single| write any time
HDMA Enable Register $420C | HDMAEN (single| write any time

ROM Speed Register $420D | MEMSEL |single| write any time
Interrupt Flag Registers $4210 | RDNMI |single| read any time
Interrupt Flag Registers $4211 | TIMEUP |single| read any time

PPU Status Register $4212 | HVBJOY |single| read any time

IO Port Read Register $4213 RDIO |single| read any time
zl_lél\;tvlfllcatlon Or Divide Result Registers $4214 | RDDIVL |single| read any time
?:I_'l?g”;hcatlon Or Divide Result Registers $4215 | RDDIVH |single| read any time
??_l;l;[vl;.')hcatlon Or Divide Result Registers $4216 | RDMPYL |single| read any time
I(\:I_it;gc;]p;llcatlon Or Divide Result Registers $4217 | RDMPYH |single| read any time
Controller Port Data Registers (Pad 1 - $4218 | JOYIL |single| read any tlme.that is not
Low) auto-joypad
Cpntroller Port Data Registers (Pad 1 - $4219 | JOYIH |single| read any tlme.that is not
High) auto-joypad
Controller Port Data Registers (Pad 2 - $421A | JOY2L [single| read any tlme.that is not
Low) auto-joypad
C_ontroller Port Data Registers (Pad 2 - $421B | JOY2H |single| read any tlme'that is not
High) auto-joypad
Controller Port Data Registers (Pad 3 - $421C | JOY3L |single| read any tlme.that is not
Low) auto-joypad
Cpntroller Port Data Registers (Pad 3 - $421D | JOY3H |single| read any tlme.that is not
High) auto-joypad
Controller Port Data Registers (Pad 4 - $421E | JOY4L |single| read any tlme.that is not
Low) auto-joypad
Controller Port Data Registers (Pad 4 - $421F | JOY4H |single read any time that is not

High)

auto-joypad

https://www.fféhacking.com/wiki/

Printed on 2024/05/19 06:59

2024/05/19 06:59 5/17 SNES Registers

DMA Registers

Register Address Name
DMA Control Register $43x0 |DMAP
DMA Destination Register $43x1 |BBAD

DMA Source Address Registers| $43x2 | A1Tx
DMA Source Address Registers| $43x3 | A1Tx
DMA Source Address Registers| $43x4 | AlB
DMA Size Registers (Low) $43x5 | DASx
DMA Size Registers (High) $43x6 | DASx

HDMA Registers

Register Address Name
HDMA Control Register $43x0 |DMAP
HDMA Destination Register $43x1 |BBAD
HDMA Table Address Registers $43x2 | A1Tx
HDMA Table Address Registers $43x3 | A1Tx
HDMA Table Address Registers $43x4 | A1B

HDMA Indirect Address Registers $43x5 | DASx
HDMA Indirect Address Registers $43x6 | DASx
HDMA Indirect Address Registers $43x7 | DASB
HDMA Mid Frame Table Address Registers (Low) | $43x8 | A2Ax
HDMA Mid Frame Table Address Registers (High)| $43x9 | A2Ax
HDMA Line Counter Register $43xA | NTLR

Register Details

Format:

rw?fvha Name
bits

“Name” is the official and unofficial name of the register.
“bits” is either 8 or 16 characters explicating the bitfields in this register.

The flags are:

rw?fvha

[11]||+--> '+" if it can be read/written at any time, '-' otherwise
|||||+---> "+" if it can be read/written during H-Blank

||||+----> "+" if it can be read/written during V-Blank

|| |+----- > '+' if it can be read/written during force-blank

| |+------ > Read/Write style: 'b' => byte

| | ‘h'/'l' => read/write high/low byte of a word
| | 'w' => word read/write twice low then high

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:

: -doc: ‘regi : i iki ?id=ff3: -doc: ‘regi =
2019/08/02 04:42 ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

|+------- > 'w' if the register is writable for an effect
+o--o---- > 'r' if the register is readable for a value or effect (i.e. not
open bus).

Screen Display

$2100 wb++++ INIDISP

xuuubbbb

X = Forced Blanking (0=Normal, 1=Screen Black)

uuu = Unused

bbbb = Master Brightness (0=Screen Black, or N=1..15:
Brightness*(N+1)/16)

This register is used for screen fades. In Forced Blank, VRAM, OAM and CGRAM can be freely accessed
(otherwise it's accessible only during Vblank). Even when in forced blank, the TV Set keeps receiving
Vsync/Hsync signals (thus producing a stable black picture). And, the CPU keeps receiving
Hblank/Vblank signals (so any enabled video NMls, IRQs, HDMAs are kept generated).

Note that force blank CAN be disabled mid-scanline. However, this can result in glitched graphics on
that scanline, as the internal rendering buffers will not have been updated during force blank. Current
theory is that BGs will be glitched for a few tiles (depending on how far in advance the PPU operates),
and OB] will be glitched for the entire scanline.

Also, writing this register on the first line of V-Blank (225 or 240, depending on overscan) when force
blank is currently active causes the OAM Address Reset to occur.

Back to top

Object Size and Object Base

$2101 wb++?7- OBSEL
sssnnbbb
sss = 0BJ Size Selection (0-5, see below) (6-7=Reserved)
Val Small Large

000 = 8x8 16x16 ;Caution:

001 = 8x8 32x32 ;In 224-1ines mode, 0BJs with 64-pixel
height

010 = 8x8 64x64 ;may wrap from lower to upper screen
border.

011 = 16x16 32x32 ;In 239-1ines mode, the same problem
applies

100 = 16x16 64x64 ;also for 0BJs with 32-pixel height.

101 = 32x32 64x64

110 16x32 32x64 (undocumented)

111 16x32 32x32 (undocumented)

(Ie. a setting of 0 means Small OBJs=8x8, Large 0BJs=16x16

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 7/17 SNES Registers

pixels)
(Whether an 0BJ is "small" or "large" is selected by a bit in
0AM)

nn
byte steps)

bbb = Base Address for 0OBJ Tiles 000h..0FFh (8K-word steps) (16K-
byte steps) (Addr>>14)

Gap between 0BJ OFFh and 100h (0=None) (4K-word steps) (8K-

This register selects the location in VRAM where the character data is stored, and the size of sprites
on the screen. The byte location of the character data can be found by shifting the b (base selection)
bits left by 14. Note that this allows only four different locations in VRAM to put the sprite data; the
high bit of the base selection should always be zero since only 64K of VRAM can be addressed.

Back to top

OAM Address and Priority Rotation

$2102 wl++?- OAMADDL
$2103 wh++7?- OAMADDH
puuuuuub aaaaaaaa

p = OAM Priority Rotation (0=0BJ #0, 1=0BJ #N) (OBJ with
highest priority)

uuuuuu = Unused

baaaaaaaa = OAM Address (for OAM read/write)

aaaaaaa
two purposes)

0BJ Number #N (for OBJ Priority) (bit 7-1 are used for

This register contains of a 9 bit Reload value and a 10 bit Address register (plus the priority flag).
Writing to $2102 or $2103 does change the lower 8 bit or upper 1 bit of the Reload value, and does
additionally copy the (whole) 9 bit Reload value to the 10 bit Address register (with address Bit 0=0
so next access will be an even address). When OAM Priority Rotation bit is set, an Obj other than
Sprite 0 may be given priority.

OAM address can be thought of in two ways, depending on your conception of OAM. If you consider
OAM as a 544-byte table, baaaaaaaa is the word address into that table. If you consider OAM to be a
512-byte table and a 32-byte table, b is the table selector and aaaaaaaa is the word address in the
table.

During rendering, the PPU is destroying the Address register (using it internally for whatever
purposes), after rendering (at begin of Vblank, ie. at begin of line 225/240, but only if not in Forced
Blank mode) it reinitializes the Address from the Reload value; the same reload occurs also when
deactivating forced blank anytime during the first scanline of vblank (ie. during line 225/240). This is
known as ‘OAM reset’. ‘OAM reset’ also occurs on certain writes to $2100.

Writing to either $2102 or $2103 resets the entire internal OAM Address to the values last written to
this register. E.g., if you set $0104 to this register, write 4 bytes, then write $01 to $2103, the internal
OAM address will point to word 4, not word 6.

Back to top

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:
2019/08/02 04:42

OAM Data Write

ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

$2104 wb++-- OAMDATA
dddddddd = byte to write to VRAM
Writes to EVEN and ODD byte-addresses work as follows:
Write to EVEN address --> set OAM Lsb = Data ;memorize
value
Write to ODD address<200h --> set WORD[addr-1] = Data*256 +
0AM Lsb
Write to ANY address>1FFh --> set BYTE[addr] = Data

This register writes a byte to OAM. After the byte is stored, the OAM address is incremented so that
the next write or read will be to the following address. Note that OAM writes are done in an odd
manner, in particular the low table of OAM is not affected until the high byte of a word is written
(however, the high table is affected immediately). Thus, if you set the address, then alternate writes
and reads, OAM will never be affected until you reach the high table!

Similarly, if you set the address to 0, then write 1, 2, read, then write 3, OAM will end up as “01 02 01
03", rather than “01 02 xx 03" as you might expect.

Technically, this register CAN be written during H-blank (and probably mid-scanline as well). However,
due to OAM address invalidation the actual OAM byte written will probably not be what you expect.
Note that writing during force-blank will only work as expected if that force-blank was begun during V-
Blank, or (probably) if $2102-$2103 have been reset during that force-blank period. OAM Size is
$0220 bytes (addresses $0220..$03FF are mirrors of $0200..$021F)

Back to top

BG Mode and BG Character Size

$2105 wb+++- BGMODE
DCBAemmm

D = BG tile size for BG4 (0=8x8, 1=16x16) (BgMode0..4: variable
8x8 or 16x16)
C =BG tile size for BG3 (0=8x8, 1=16x16) (BgMode5: 8x8 acts as
16x8)
B = BG tile size for BG2 (0=8x8, 1=16x16) (BgMode6: fixed 16x87?)
A =BG tile size for BGl (0=8x8, 1=16x16) (BgMode7: fixed 8x8)
e = Mode 1 BG3 priority bit (O@=Normal, 1=High)
mmm = BG Mode (0..7, see below)
Mode BG depth OPT Priorities
1234 Front -> Back Type
0 2 222 n 3AB2ab1CD0Ocd Normal
1 4 4 2 n 3AB2ablC 0c Normal

* if e set: (C3AB2abl Oc Normal
2 4 4 y 3A 2B la Ob Offset-per-tile

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 9/17 SNES Registers

3 8 4 n 3A 2B la Ob Normal
4 8 2 y 3A 2B la Ob Offset-per-tile
5 4 2 n 3A 2B la Ob 512-pix-hires
6 4 y 3A 2 1a 0 512-pix- plus Offset-per-
tile
7 8 n 3 2 1la 0 Rotation /Scaling
7+EXTBG 8 7 n 3 2B la Ob Rotation /Scaling
Mode 5/6 don't support screen addition/subtraction.
CG Direct Select is support on BGl of Mode 3/4, and on BG1l/BG2?
of Mode 7.

This register determines the size of tile represented by one entry in the tile map array, the order that
BGs are drawn on the screen, and the screen mode. If the BG tile size for BG1/BG2/BG3/BG4 bit is set,
then the BG is made of 16x16 tiles. Otherwise, 88 tiles are used. However, note that Modes 5 and 6
always use 16-pixel wide tiles, and Mode 7 always uses 8x8 tiles. “OPT” means “Offset-per-tile
mode”. For the priorities, numbers mean sprites with that priority. Letters correspond to BGs (A=1,
B=2, etc), with upper/lower case indicating tile priority 1/0. The priority bit only works in Mode 1. In all
other modes, it is ignored (drawing is performed as if this bit were clear.)

Notice that Mode 7 has only one BG. All games which appear to have a Mode 7 screen but more than
one BG either use sprites to simulate a BG, or switch video modes midframe via HDMA. Mode 7's
EXTBG mode allows you to enable BG2, which uses the same tilemap and character data as BG1 but
interprets bit 7 of the pixel data as a priority bit.

Back to top

Mosaic Size and Mosaic Enable

$2106 wb+++- MOSAIC
xxxxDCBA

XXXX = Mosaic Size (0=Smallest/1x1l, OFh=Largest/16x16)
D = BG4 Mosaic Enable (0=0ff, 1=0n)
C = BG3 Mosaic Enable (0=0ff, 1=0n)
B = BG2 Mosaic Enable (0=0ff, 1=0n)
A = BGl Mosaic Enable (0=0ff, 1=0n)

Allows to divide the BG layer into NxN pixel blocks, in each block, the hardware picks the upper-left
pixel of each block, and fills the whole block by the color - thus effectively reducing the screen
resolution.

Horizontally, the first block is always located on the left edge of the TV screen. Vertically, the first
block is located on the top of the TV screen. When changing the mosaic size mid-frame, the hardware
does first finish current block (using the old vertical size) before applying the new vertical size.
Technically, vertical mosaic is implemented as so: subtract the veritical index (within the current
block) from the vertical scroll register (BGnVOFS).

It seems that writing the same value to this register does not reset the ‘starting scanline’. Note that
mosaic is applied after scrolling, but before any clip windows, color windows, or math. So the XxX
block can be partially clipped, and it can be mathed as normal with a non-mosaiced BG. But scrolling
can’t make it partially one color and partially another.

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:

: -doc: ‘regi : i iki ?id=ff3: -doc: ‘regi =
2019/08/02 04:42 ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

Modes 5-6 should ‘double’ the expansion factor to expand half-pixels. This actually makes xxxx=0
have a visible effect, since the even half-pixels (usually on the subscreen) hide the odd half-pixels.
The same thing happens vertically with interlace mode.

Mode 7, of course, is weird. BG1 mosaics about like normal, as long as you remember that the Mode 7
transformations have no effect on the XxX blocks. BG2 uses bit A to control ‘vertical mosaic’ and bit B
to control ‘horizontal mosaic’, so you could be expanding over 1xX, Xx1, or XxX blocks. This can get
really interesting as BG1 still uses bit A as normal, so you could have the BG1 pixels expanded XxX
with high-priority BG2 pixels expanded 1xX on top of them.

Back to top

BG Screen Base and Screen Size

$2107 wb++?- BG1SC
$2108 wb++?- BG2SC
$2109 wb++?- BG3SC
$210A wb++?- BG4SC
aaaaaabb
aaaaaa = Screen Base Address in VRAM (in 1K-word steps, aka 2K-byte
steps) (Addr>>10)
bb = Screen Size: 00=32x32 tiles
01=64x32 tiles
10=32x64 tiles (H-Mirror)
11=64x64 tiles (Four-Screen)
(00:SCO Sco 01:SCO SC1 10:SCO SCO 11:SCo

One-Screen)
V-Mirror)

—~ o~ o~ o~

SC1)
(SCo sco SCO SC1 SC1 SC1 SC2
SC3)

Specifies the BG Map addresses in VRAM. The “SCn” screens consists of 32x32 tiles each. Ignored in
Mode 7 (Base is always zero, size is always 128x128 tiles).

To calculate the byte location where the tile map starts, shift the a (address) bits left by 11 (multiply
by 2048.) The SC size is the dimensions of the tile map; if using 8x8 tile mode, this allows BG
dimensions of 256 or 512 pixels; if in 16x16 mode, the dimensions can be 512 or 1024 pixels. Note
that, since there is only 64K of VRAM, the most significant bit must be zero.

When using a screen size wider than 32 tiles, the format is a little different than you might expect.
When the width is 64 tiles, then rather than each line in the tile map extending to 128 bytes (instead
of 64), there will actually be two tile maps, stored one right after the other in memory. The first tile
map will contain the left 32 tiles (x coordinates 0 to 255, when using 88 tiles), and the next tile map
will contain the right 32 tiles (x coordinates 256 to 511, when using 8x8 tiles. Setting the scroll
register to 512, then, will be the same at setting it to zero.)

A note about using 16x16 tiles: These are stored in exactly the same way as 16x16 sprites; that is,
the first and second rows have 14 ignored tiles between them.

Back to top

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 11/17 SNES Registers

BG Character Data Area Designation

$210B wb++?- BG12NBA
$210C wb++?- BG34NBA
ddddcccc bbbbaaaa

dddd = BG4 Tile Base Address (in 4K-word steps)
cccc = BG3 Tile Base Address (in 4K-word steps)
bbbb = BG2 Tile Base Address (in 4K-word steps)
aaaa = BGl Tile Base Address (in 4K-word steps)

This register selects the location in VRAM where the tile map starts. The byte address is calculated by
shifting the four bits left by 13 (multiplying by 8192). Simply spoken: Saving “$63” into $210B makes
the PPU look for the Tileset for BG2 at $6000 in the VRAM and for BG1 at $3000. Note that, since
there is only 64K of VRAM, the highest of the four bits must be set to 0. Ignored in Mode 7 (Base is
always zero).

BG1 and Mode 7 Scroll

$210D ww+++- BG1HOFS
ww+++- M7HOFS
$210E ww+++- BGLVOFS
ww+++- M7VOFS
------ XX XXXXXXXX
- - -mmmmm mmmmmmmm
XXXXXXXXXX = The BG offset, 10 bits
mmmmmmmmmmmmm = The Mode 7 BG offset, 13 bits two's-complement
signed

These are actually two registers in one (or would that be “4 reqgisters in 2”?7). Anyway, writing $210D
will write both BGIHOFS which works exactly like the rest of the BGnxOFS registers below ($210F-
$2114), and M7HOFS which works with the M7* registers ($211B-$2120) instead.

Modes 0-6 use BG1xOFS and ignore M7xOFS, while Mode 7 uses M7x0OFS and ignores BG1HOFS. See
the appropriate sections below for details, and note the different formulas for BGIHOFS versus
M7HOFS.

Back to top

BG2, BG3 and BG4 Scroll

$210F ww+++- BG2HOFS
$2110 ww+++- BG2VOFS
$2111 ww+++- BG3HOFS
$2112 ww+++- BG3VOFS
$2113 ww+++- BG4HOFS
$2114 ww+++- BG4VOFS

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:

: -doc: ‘regi : i iki ?id=ff3: -doc: ‘regi =
2019/08/02 04:42 ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

—————— XX XXXXXXXX
XXXXXXXXXX = The BG offset, 10 bits

Note that these are “write twice” registers, first the low byte is written then the high. Current theory
is that writes to the register work like this:

BGNHOFS = (Current<<8) | (Prev&7) | ((Reg>>8)&7);
Prev = Current;

or

BGnNVOFS = (Current<<8) | Prev;

Prev = Current;

Note that there is only one Prev shared by all the BGnxOFS registers. This is NOT shared with the M7*
registers (not even M7x0OFS and BG1xOFS).

Also, note that all BGs wrap if you try to go past their edges (if a pixel value is placed in this register
that is larger than the width of the BG, a modulus can be performed to determine what the actual
pixel will be that is displayed. For example, if the BG1 horizontal pixel value is set to 257, but the
width of the BG is 256 pixels, the result will be the same as if it was set to 1). Thus, the maximum
offset value in BG Modes 0-6 is 1023, since you have at most 64 tiles (if x/y of BGnSC is set) of 16
pixels each (if the appropriate bit of BGMODE is set).

Horizontal scrolling scrolls in units of full pixels no matter if we're rendering a 256-pixel wide screen
or a 512-half-pixel wide screen. However, vertical scrolling will move in half-line increments if
interlace mode is active.

Back to top

Video Port Control

$2115 wb++?- VMAIN
i---ttrr
i = Address increment mode:
0 => increment after writing to $2118/reading from $2139
1 => increment after writing to $2119/reading from $213A

tt = Address translation
00 = No translation
01 = 8bit rotate
10 = 9bit rotate
11 = 10bit rotate
rr = Address increment amount

00 = Normal increment by 1
01 = Increment by 32
10 = Increment by 128
11 = Increment by 128

This register controls the way data is uploaded to VRAM. The bits in here are a bit weird, but can be
useful. When you want to change only the high byte of a series of VRAM locations (register $2116 * 2
+ 1), you should set i to 1. When you want to change just the low byte, set i to 0. When you want to

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 13/17 SNES Registers

write a whole word, you should set i to 0; otherwise, if i=1, writing a word will cause the high byte of
the first location to be changed, followed by the low byte of the next location.

The address translation (tt) is intended for bitmap graphics (where one would have filled the BG Map
by increasing Tile numbers), technically it does thrice left-rotate the lower 8, 9, or 10 bits of the Word-
address. As an example if $2116-$2117 are set to #$0003, then word address #$0018 will be written
instead, and $2116-$2117 will be incremented to $0004:

Translation Bitmap Type Port [2116h/17h] VRAM Word-Address
8bit rotate 4-color; 1 word/plane aaaaaaaa¥YYYXXXxXX --> aaaaaaaaxxxxxYYY
9bit rotate 16-color; 2 words/plane aaaaaaaYYYXxxXXP --> aaaaaaaxxxxxPYYY
10bit rotate 256-color; 4 words/plane aaaaaaYYYXxxxxxPP --> aaaaaaxxxxxPPYYY

Where “aaaaa” would be the normal address MSBs, “YYY” is the Y-index (within a 8x8 tile), “xxxxx”
selects one of the 32 tiles per line, “PP” is the bit-plane index (for BGs with more than one Word per
plane). For the intended result (writing rows of 256 pixels) the Translation should be combined with
Increment Step=1.

For Mode 7 bitmaps one could eventually combine step 32/128 with 8bit/10bit rotate:

8bit-rotate/step32 aaaaaaaaXXXxxYYY --> aaaaaaaaxxYYYXXX
10bit-rotate/stepl28 aaaaaaXXXxxxXYYY --> aaaaaaxxxxYYYXXX

Though the SNES can't access enought VRAM for fullscreen Mode 7 bitmaps. Step 32 (without
translation) is useful for updating BG Map columns (eg. after horizontal scrolling).

Back to top

VRAM Address

$2116 wl++7?- VMADDL
$2117 wh++?- VMADDH
ddaaaaaa aaaaaaaa = Word address for accessing VRAM

VRAM Address for reading/writing. This is a WORD address (2-byte steps), the PPU could theoretically
address up to 64K-words (128K-bytes), in practice, only 32K-words (64K-bytes) are installed in SNES
consoles (VRAM address bitl5 is not connected, so addresses 8000h-FFFFh are mirrors of 0-7FFFh).

When reading from VRAM, a “dummy read” must be performed after writing to this register; the first
value read is supposed to be meaningless. No “dummy write” is required, however.

After reading/writing VRAM Data, the Word-address can be automatically incremented by 1,32,128
(depending on the Increment Mode in Register $2115) (Note: the Address Translation feature is
applied only “temporarily” upon memory accesses, it doesn't affect the value in Register $2116-
$2117). Writing to $2116-$2117 does prefetch 16bit data from the new address (for later reading).

Back to top

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:
2019/08/02 04:42

VRAM Data Write

ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

$2118 wl++-- VMDATAL
$2119 wh++-- VMDATAH
XXXXXXXX XXXXXXXX = Data to write to VRAM

This writes data to VRAM. The writes take effect immediately, even if no increment is performed. The
address is incremented when one of the two bytes is written; which one depends on the setting of bit
7 of register $2115. Depending on the Increment Mode the address does (or doesn't) get
automatically incremented after the write. Keep in mind the address translation bits of $2115 as well.
The interaction between these registers and $2139-$213A is unknown.

Back to top

Mode 7 Settings

wb++7?7- M7SEL
re----yx

rr = Screen Over

00 = Wrap within 128x128 tile area

01 = Wrap within 128x128 tile area (same as 0)

10 = Qutside 128x128 tile area is Transparent

11 = Outside 128x128 tile area is filled by Tile $00
y = Screen V-Flip (0=Normal, 1=Flipped) (flip 256x256 "screen")
X = Screen H-Flip (0=Normal, 1=Flipped) (flip 256x256 "screen")

Back to top

Mode 7 Matrix A, B, Cand D

$211B ww+++- M7A (and Maths 16bit operand)
$211C ww+++- M7B (and Maths 8bit operand)
$211D ww+++- M7C
$211E ww+++- M7D
daaaaaaa aaaaaaaa = Signed 16bit values in 1/256 pixel units (1lbit
sign, 7bit integer, 8bit fraction)

Note that these are “write twice” registers, first the low byte is written then the high. Current theory
is that writes to the register work like this:

Reg = (Current<<8) | Prev;
Prev = Current;

Note that there is only one Prev shared by all these registers. This Prev is NOT shared with the
BGnxOFS registers, but it IS shared with the M7xOFS registers. These set the matrix parameters for

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 15/17 SNES Registers

Mode 7. The values are an 8-bit fixed point, i.e. the value should be divided by 256.0 when used in
calculations. See below for more explanation.

The product A*(B»8) may be read from registers $2134-$2136. There is supposedly no important
delay. It may not be operative during Mode 7 rendering.

Back to top

Mode 7 Center Xand Y

$211F ww+++- M7X
$2120 ww+++- M7Y

- - - XXXXX XXXXXXXX = Signed 13bit values in pixel units (1lbit sign,
12bit integer, Obit fraction)

Note that these are “write twice” registers, like the other M7* registers. See above for the write
semantics. The value is 13 bit two’s-complement signed. The matrix transformation formula is:
[X] [AB] [SX + M7HOFS - CX] [CX]
[1 =1 || I+]
[Y] [CD] [SY + M7VOFS - CY] [CY]
Note: SX/SY are screen coordinates. X/Y are coordinates in the playing field from which the pixel is

taken. If $211A bit 7 is clear, the result is then restricted to 0=X«<1023 and 0<Y«<1023. If $211A bits 6
and 7 are both set and X or Y is less than 0 or greater than 1023, use the low 3 bits of each to choose

the pixel from character 0. The bit-accurate formula seems to be something along the lines of:
#define CLIP(a) (((a)&0x2000)7?((a)|~60x3ff):((a)&0Ox3ff))

((A*CLIP(HOFS-CX))&~63)

((B*y)&-63) + ((B*CLIP(VOFS-CY))&~63)
(CX<<8)

((C*CLIP(HOFS-CX))&~63)

((D*y)&~63) + ((D*CLIP(VOFS-CY))&63)
(CY<<8)

X[0,y]

Y[0,yl]

+ + 11+ + 1

X[le] = X[X‘]-;Y] + A
Y[le] Y[X'l:Y] C

(In all cases, X[] and Y[] are fixed point with 8 bits of fraction)

Back to top

CGRAM Address

$2121 wb+++- CGADD

ffehacking.com wiki - https://www.fféhacking.com/wiki/

Last update:

: -doc: ‘regi : i iki ?id=ff3: -doc: ‘regi =
2019/08/02 04:42 ff3:ff3us:doc:snes:register https://www.fféhacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

aaaaaaaa = CGRAM word address

This sets the word address (byte address * 2, i.e. color) to begin uploading (or downloading) data to
CGRAM, which will be affected by $2122 and $213B.

Writing “0” to $2121 will change the “currently selected color index” used by $2122, to 0. Upon
writing a color to $2122, the color will be stored into the array index selected by $2121, which in this
case would be 0 - if you wrote 0 to $2121 before writing a color to $2122.

Keep in mind the color index accessed by $2121 will automatically increment by 1 after writing a
color to $2122. This is an effect generated by $2122 after being used in case you want to write
specific colors in a series.

Back to top

CGRAM Data Write

$2122 ww+++- CGDATA
bbbbbbbb = byte to write to CGRAM
Writes to EVEN and ODD byte-addresses work as follows:
Write to EVEN address --> set Cgram Lsb = Data ;memorize
value
Write to ODD address --> set WORD[addr-1] = Data*256 +
Cgram Lsb

This register writes a byte to CGRAM. After the byte is stored, the CGRAM address is incremented so
that the next write or read will be to the following byte. Accesses to CGRAM are handled just like
accesses to the low table of OAM, see $2104 for details. Note that the color values are stored in BGR
order (-bbbbbgg gggrrrrr).

Back to top

Window Mask Settings

$2123 wb+++- WI12SEL - Window Mask Settings for BGl and BG2
$2124 wb+++- W34SEL - Window Mask Settings for BG3 and BG4
$2125 wb+++- WOBJSEL - Window Mask Settings for 0OBJ and Color Window
aabbccdd
2123h 2124h 2125h

aa = BG2 BG4 MATH Window-2 Area (0..1=Disable, 1=Inside,
2=0utside)

bb = BG2 BG4 MATH Window-1 Area (0..1=Disable, 1l=Inside,
2=0utside)

cc = BG1 BG3 0BJ Window-2 Area (0..1=Disable, 1=Inside,
2=0utside)

dd = BG1 BG3 0BJ Window-1 Area (0..1=Disable, 1l=Inside,
2=0utside)

https://www.fféhacking.com/wiki/ Printed on 2024/05/19 06:59

2024/05/19 06:59 17/17 SNES Registers

Allows to select if the window area is inside or outside the X1,X2 coordinates, or to disable the area. In
other words, these registers determine which Windows to apply to which BGs, sprite (OB]J) or color
window (MATH), and whether clipping should be performed inside or outside the window. To enable
windowing, the appropriate bits in registers $212E and $212F must be set in addition to the bits in
these registers.

Back to top

Window Position

$2126 wb+++- WHO - Window 1 Left Position
$2127 wb+++- WH1 - Window 1 Right Position
$2128 wb+++- WH2 - Window 2 Left Position
$2129 wb+++- WH3 - Window 2 Right Position
XXXXXXXX = Window Position ($00..$FF; O=leftmost, 255=rightmost)

Specifies the horizontal boundaries of the windows. Note that there are no vertical boundaries (these
could be implemented by manipulating the window registers via IRQ and/or HDMA). The “inside-
window” region extends from X1 to X2 (that, including the X1 and X2 coordinates), so the window
width is X2-X1+1. If the width is zero (or negative), then the “inside-window” becomes empty, and
the whole screen will be treated “outside-window”.

Back to top

From:
https://www.fféhacking.com/wiki/ - fféhacking.com wiki

Permanent link:

Last update: 2019/08/02 04:42

ffehacking.com wiki - https://www.fféhacking.com/wiki/

https://www.ff6hacking.com/wiki/
https://www.ff6hacking.com/wiki/doku.php?id=ff3:ff3us:doc:snes:register&rev=1564720976

	SNES Registers
	Address Bus B Registers
	Old Style Joypad Registers
	Internal CPU Registers
	DMA Registers
	HDMA Registers

	Register Details
	Screen Display
	Object Size and Object Base
	OAM Address and Priority Rotation
	OAM Data Write
	BG Mode and BG Character Size
	Mosaic Size and Mosaic Enable
	BG Screen Base and Screen Size
	BG Character Data Area Designation
	BG1 and Mode 7 Scroll
	BG2, BG3 and BG4 Scroll
	Video Port Control
	VRAM Address
	VRAM Data Write
	Mode 7 Settings
	Mode 7 Matrix A, B , C and D
	Mode 7 Center X and Y
	CGRAM Address
	CGRAM Data Write
	Window Mask Settings
	Window Position

